Complete vibrational bandgap in thin elastic metamaterial plates with periodically slot-embedded local resonators



This paper presents a metamaterial plate (metaplate) consisting of a periodic array of holes on a homogeneous thin plate with slot-embedded resonators. The study numerically proves that the proposed model can generate a complete vibrational bandgap in the low-frequency range. A simplified analytical model was proposed for feasibly and accurately capturing the dispersion behavior and first bandgap characteristics in the low-frequency range, which can be used for initial design and bandgap study of the metaplate. A realistic and practical unit metaplate was subsequently designed to verify the analytical model through finite element simulations. The metaplate not only generated a complete vibrational bandgap but also exhibited excellent agreement in both analytical and finite element models for predicting the bandgap characteristics. This study facilitates the design of opening and tuning bandgaps for potential applications such as low-frequency vibration isolation and stress wave mitigation.


Elastic metamaterial plate Local resonance Complete bandgap Dispersion behavior Vibration isolation 



HH Huang acknowledges the support (Grant No. 106-2221-E-002-018-MY3) provided by the Ministry of Science and Technology (MOST), Taiwan.


  1. 1.
    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000). CrossRefGoogle Scholar
  2. 2.
    Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005). CrossRefGoogle Scholar
  3. 3.
    Yao, S., Zhou, X., Hu, G.: Experimental study on negative effective mass in a 1D mass-spring system. New J. Phys. 10, 043020 (2008). CrossRefGoogle Scholar
  4. 4.
    Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009). CrossRefGoogle Scholar
  5. 5.
    Yu, D., Liu, Y., Zhao, H., Wang, G., Qiu, J.: Flexural vibration band gaps in Euler–Bernoulli beams with locally resonant structures with two degrees of freedom. Phys. Rev. B 73, 064301 (2006). CrossRefGoogle Scholar
  6. 6.
    Yu, D., Liu, Y., Wang, G., Zhao, H., Qiu, J.: Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J. Appl. Phys. 100, 124901 (2006). CrossRefGoogle Scholar
  7. 7.
    Huang, H.H., Lin, C.K., Tan, K.T.: Attenuation of transverse waves by using a metamaterial beam with lateral local resonators. Smart Mater. Struct. 25, 085027 (2016). CrossRefGoogle Scholar
  8. 8.
    Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010). CrossRefGoogle Scholar
  9. 9.
    Tan, K.T., Huang, H.H., Sun, C.T.: Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng. 64, 20–29 (2014). CrossRefGoogle Scholar
  10. 10.
    Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014). CrossRefGoogle Scholar
  11. 11.
    Huang, H.H., Sun, C.T.: Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philos. Mag. 91, 981–996 (2011). CrossRefGoogle Scholar
  12. 12.
    Zhu, R., Huang, H.H., Huang, G.L., Sun, C.T.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49, 1477–1485 (2011). CrossRefGoogle Scholar
  13. 13.
    Wu, T.T., Huang, Z.G., Tsai, T.C., Wu, T.C.: Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl. Phys. Lett. 93, 111902 (2008). CrossRefGoogle Scholar
  14. 14.
    Oudich, M., Li, Y., Assouar, B.M., Hou, Z.: A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 12, 083049 (2010). CrossRefGoogle Scholar
  15. 15.
    Oudich, M., Senesi, M., Assouar, M.B., Ruzenne, M., Sun, J.H., Vincent, B., Hou, Z., Wu, T.T.: Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys. Rev. B 84, 165136 (2011). CrossRefGoogle Scholar
  16. 16.
    Xiao, Y., Wen, J., Wen, X.: Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. J. Phys. D Appl. Phys. 45, 195401 (2012). CrossRefGoogle Scholar
  17. 17.
    Zhu, R., Huang, G.L., Huang, H.H., Sun, C.T.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 375, 2863–2867 (2011). CrossRefGoogle Scholar
  18. 18.
    Huang, T.Y., Shen, C., Jing, Y.: Membrane-and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 139(6), 3240–3250 (2016). CrossRefGoogle Scholar
  19. 19.
    Ma, F., Huang, M., Wu, J.H.: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant. J. Appl. Phys. 121(1), 015102 (2017). CrossRefGoogle Scholar
  20. 20.
    Bilal, O.R., Hussein, M.I.: Trampoline metamaterial: local resonance enhancement by springboards. Appl. Phys. Lett. 103(11), 111901 (2013). CrossRefGoogle Scholar
  21. 21.
    Ma, J., Hou, Z., Assouar, B.M.: Opening a large full phononic band gap in thin elastic plate with resonant units. J. Appl. Phys. 115(9), 093508 (2014). CrossRefGoogle Scholar
  22. 22.
    Li, Y., Chen, T., Wang, X., Xi, Y., Liang, Q.: Enlargement of locally resonant sonic band gap by using composite plate-type acoustic metamaterial. Phys. Lett. A 379(5), 412–416 (2015). CrossRefGoogle Scholar
  23. 23.
    Li, Y., Zhu, L., Chen, T.: Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation. Ultrasonics 73, 34–42 (2017). CrossRefGoogle Scholar
  24. 24.
    Wang, Y.F., Wang, Y.S., Su, X.X.: Large bandgaps of two-dimensional phononic crystals with cross-like holes. J. Appl. Phys. 110, 113520 (2011). CrossRefGoogle Scholar
  25. 25.
    Wang, Y.F., Wang, Y.S.: Complete bandgaps in two-dimensional phononic crystal slabs with resonators. J. Appl. Phys. 114, 043509 (2013). CrossRefGoogle Scholar
  26. 26.
    Wang, Y.F., Wang, Y.S.: Multiple wide complete bandgaps of two-dimensional phononic crystal slabs with cross-like holes. J. Sound Vib. 332(8), 2019–2037 (2013). CrossRefGoogle Scholar
  27. 27.
    Wang, Y.F., Wang, Y.S., Zhang, C.: Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: bandgap and simultaneously double negative properties. J. Acoust. Soc. Am. 139(6), 3311–3319 (2016). CrossRefGoogle Scholar
  28. 28.
    Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. (2018).
  29. 29.
    Baravelli, E., Ruzzene, M.: Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332, 6562–6579 (2013). CrossRefGoogle Scholar
  30. 30.
    Peng, H., Pai, P.F.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014). CrossRefGoogle Scholar
  31. 31.
    Gao, N., Wu, J.H., Yu, L.: Research on bandgaps in two-dimensional phononic crystal with two resonators. Ultrasonics 56, 287–293 (2015). CrossRefGoogle Scholar
  32. 32.
    Li, Y., Chen, T., Wang, X., Yu, K., Song, R.: Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot. Phys. B 456, 261–266 (2015). CrossRefGoogle Scholar
  33. 33.
    Frandsen, N.M.M., Bilal, O.R., Jensen, J.S., Hussein, M.I.: Inertial amplification of continuous structures: large band gaps from small masses. J. Appl. Phys. 119, 124902 (2016). CrossRefGoogle Scholar
  34. 34.
    Li, B., Tan, K.T.: Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial. J. Appl. Phys. 120, 075103 (2016). CrossRefGoogle Scholar
  35. 35.
    Qureshi, A., Li, B., Tan, K.T.: Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials. Sci. Rep. 6, 28314 (2016). CrossRefGoogle Scholar
  36. 36.
    Colquitt, D.J., Colombi, A., Craster, R.V., Roux, P., Guenneau, S.R.L.: Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction. J. Mech. Phys. Solids 99, 379–393 (2017). MathSciNetCrossRefGoogle Scholar
  37. 37.
    Love, A.E.H.: The small free vibrations and deformations of elastic shells. Philos. Trans. A Math. Phys. Eng. Sci. 179, 491–549 (1888). CrossRefMATHGoogle Scholar
  38. 38.
    Osterberg, H., Cookson, J.W.: A theory of two-dimensional longitudinal and flexural vibrations in rectangular isotropic plates. J. Appl. Phys. 6, 234–246 (1935). MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering Science and Ocean EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations