Skip to main content
Log in

Solution of a bonded bimaterial problem of two interfaces subjected to different temperatures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A closed-form solution is derived for the bonded bimaterial planes at two interfaces subjected to different temperatures. The bonded planes with two interfaces are symmetric with respect to the interface, which is straight. A rational mapping function and complex stress functions are used for the analysis. The problem is reduced to a Riemann–Hilbert problem. The solution includes an integral term. This integral cannot be carried out. However, the first derivative of complex stress functions which does not include integral terms with regard to the variables of the mapping plane is achieved. Therefore, there is no need for numerical integration to calculate stress components and to determine unknown coefficients in a complex stress function. This is very beneficial. It is more difficult to derive the solution to the two-interface problem compared to the general solution. As a demonstration of geometry, semi-strips bonded in two places at the ends of strips are considered. Unbonded parts are a model of debonding. The solution for different geometrical shapes can be obtained by changing the mapping function. Some stress distributions are shown for different lengths of the interface. The stress intensity of debonding (SID) (corresponding to the root of strain energy release rate) is investigated for the debonding extension. SID is the same as the root of strain energy release rate for the evaluation of the strength at the debonding tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hasebe, N., Kato, S., Ueda, A., Nakamura, T.: Stress analysis of dissimilar strip with debondings. Trans. Jpn. Soc. Mech. Eng. 66(577A), 1959–1966 (1994). (In Japanese)

    Article  Google Scholar 

  2. Hasebe, N., Kato, S., Nakamura, T.: Bimaterial problem of strip with debondings under tension and bending. Am. Soc. Test. Mater. STP 1220(25), 206–221 (1995)

    Google Scholar 

  3. Hasebe, N., Kato, S., Ueda, A., Nakamura, T.: Stress analysis of bimaterial strip with debondings under tension. JSME Int. J. 39(2A), 157–165 (1996)

    Google Scholar 

  4. Hasebe, N., Kato, S.: Solution of problem of two dissimilar materials bonded at one interface subjected to temperature. Arch. Appl. Mech. 84(6), 913–931 (2014)

    Article  MATH  Google Scholar 

  5. Djokovic, J.M., Nikolic, R.R., Tadic, S.S.: Influence of temperature on behavior of the interfacial crack between the two layers. Therm. Sci. 14, 259–268 (2010)

    Article  Google Scholar 

  6. Quyang, Z., Ji, G., Li, G.: On approximately realizing and characterizing pure Mode-I interface fracture between bonded dissimilar materials. ASME J. Appl. Mech. 78(3), 031020-1–031020-11 (2011)

    Google Scholar 

  7. Lan, X., Noda, A., Zhang, Y., Michinaka, K.: Single and double edge interface crack solutions of material combination. Acta Mech. Solida Sin. 25(4), 404–416 (2012)

    Article  Google Scholar 

  8. Li, Y., Viola, E.: Size effect investigation of a central interface crack between two bonded dissimilar materials. Compos. Struct. 105(12), 90–107 (2013)

    Article  Google Scholar 

  9. Afendi, M., Majid, M.S.A., Daud, R., Rahman, A., Teramoto, T.: Strength prediction and reliability of brittle epoxy adhesively bonded dissimilar joint. Int. J. Adhes. Adhes. 45, 21–31 (2013)

    Article  Google Scholar 

  10. Ma, L., He, R., Zhang, J., Shaw, B.: A simple model for the study of the tolerance of interfacial crack under thermal load. Acta Mech. 224(7), 1571–1577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yousefsani, S.A., Tahani, M.: An analytical investigation on thermo-mechanical stress analysis of adhesively bonded joints undergoing heat conduction. Arch. Appl. Mech. 84, 67–79 (2014)

    Article  MATH  Google Scholar 

  12. Banks-Sills, L.: 50th anniversary article: review on interface fracture and delamination of composites. Strain 50(2), 98–110 (2014)

    Article  Google Scholar 

  13. Hasebe, N., Kato, S.: Solution of bonded bimaterial problem of two interfaces subjected to concentrated forces and couples. ZAMM J. Appl. Math. Mech. (2015) (on line)

  14. Dundurs, J.: Effect of elastic constants on stress in composite under plane deformation. J. Compos. Mater. 1, 310–322 (1967)

    Google Scholar 

  15. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity, 4th edn. Noordfoff, Netherlands (1963)

    MATH  Google Scholar 

  16. Salganic, R.L.: The brittle fracture of cemented body. PMM J. Appl. Math. Mech. 27(5), 1468–1478 (1963)

    Article  Google Scholar 

  17. Hasebe, N., Okumura, M., Nakamura, T.: A crack and debonding at the edge of bonded bimaterial half planes under couples. Jpn. Soc. Mater. Sci. Jpn. 39(445), 1405–1410 (1990). (In Japanese)

    Article  Google Scholar 

  18. Hasebe, N., Tsutsui, S., Nakamura, T.: Debondings at a semielliptical rigid inclusion on the rim of a half plane. ASME J. Appl. Mech. 55, 574–579 (1988)

    Article  MATH  Google Scholar 

  19. Hasebe, N., Tsutsui, S., Nakamura, T.: A mixed boundary value problem for debonding of a semi-elliptic rigid inclusion. Arch. Appl. Mech. 62, 306–315 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Hasebe.

Appendices

Appendix 1: Derivation of \(\overline{F_{11} (1/\bar{{t}}_1)}\)

Taking the conjugate of function \(F_{11} (t_1 )\) for \(j=1\) in Eq. (38c), the following equation is obtained:

$$\begin{aligned} \overline{F_{11} (1/\bar{{t}}_1 )} =\overline{\chi _1 (1/\bar{{t}}_1 )} \int \nolimits _{\bar{{\beta }}_1}^{\bar{{\alpha }}_2} {\frac{1}{\overline{\chi _1 (\sigma )} \overline{(\sigma -1/\bar{{t}}_1 )}}} \hbox {d}\bar{{\sigma }} \end{aligned}$$
(65)

Using the relations \(\bar{{\sigma }}=1/\sigma , \bar{{\alpha }}_2 =1/\alpha _2\), and \(\bar{{\beta }}_1 =1/\beta _1 \) on the unit circle, the equation above is

$$\begin{aligned} \overline{F_{11} (1/\bar{{t}}_1 )}= & {} \overline{\chi _1 (1/\bar{{t}}_1 )} \int \nolimits _{\beta _1}^{\alpha _2} {\frac{t_1 }{\overline{\chi _1 (\sigma )} \sigma (\sigma -t_1 )}} \hbox {d}\sigma \nonumber \\= & {} \chi _2 (t_1 )\int \nolimits _{\beta _1}^{\alpha _2} {\frac{\sigma }{\chi _2 (\sigma )t_1 (\sigma -t_1 )}} \hbox {d}\sigma \nonumber \\= & {} \chi _2 (t_1 )\int \nolimits _{\beta _1}^{\alpha _2} {\frac{1}{\chi _2 (\sigma )(\sigma -t_1 )}} \hbox {d}\sigma +\frac{\chi _2 (t_1 )}{t_1 }\int \nolimits _{\beta _1}^{\alpha _2} {\frac{1}{\chi _2 (\sigma )}} \hbox {d}\sigma \nonumber \\= & {} F_{21} (t_1 )-\frac{\chi _2 (t_1 )}{t_1}\frac{2i}{\chi _2 (1)}I_{21} (0) \end{aligned}$$
(66)

where the following relation was used:

$$\begin{aligned} \frac{\overline{\chi _1 (1/t_1 )}}{\overline{\chi _1 (\sigma )} }=\frac{\sigma ^{2}\chi _2 (t_1 )}{t_1^2 \chi _2 (\sigma )}. \end{aligned}$$
(67)

\(I_{21} (0)\) is derived as follows: When the variable \(\sigma \) is transformed on the real variable t by

$$\begin{aligned} \sigma= & {} \frac{(t+i)}{(t-i)}, \end{aligned}$$
(68a)
$$\begin{aligned} t= & {} -i\frac{(1+\sigma )}{(1-\sigma )} \end{aligned}$$
(68b)

the following equation is obtained:

$$\begin{aligned} \int \nolimits _{\beta _1}^{\alpha _2} {\frac{1}{\chi _2 (\sigma )}} \hbox {d}\sigma =\frac{-2i}{\chi _2 (1)}\int \nolimits _{t_{\beta _{_1}}}^{t_{\alpha _{_2} }} {\frac{1}{\chi _{2t} (t)}} \hbox {d}t\equiv \frac{-2i}{\chi _2(1)}I_{21} (0) \end{aligned}$$
(69)

where

$$\begin{aligned}&\displaystyle \hbox {d}\sigma =\frac{-2i}{(t-i)^{2}}\hbox {d}t \end{aligned}$$
(70a)
$$\begin{aligned}&\displaystyle \chi _2 (\sigma )=\frac{\chi _2 (1)}{(t-i)^{2}}\chi _{2t} (t) \end{aligned}$$
(70b)
$$\begin{aligned}&\displaystyle \chi _{2t} (t)=(t-t_{\alpha _1} )^{m_2}(t-t_{\beta _1} )^{1-m_2 }(t-t_{\alpha _2} )^{m_2}(t-t_{\beta _2} )^{1-m_2} \end{aligned}$$
(70c)
$$\begin{aligned}&\displaystyle t_{\alpha _1} =-i\frac{1+\alpha _1}{1-\alpha _1},\quad t_{\beta _1} =-i\frac{1+\beta _1}{1-\beta _1},\quad t_{\alpha _2} =-i\frac{1+\alpha _2}{1-\alpha _2},\quad t_{\beta _2} =-i\frac{1+\beta _2}{1-\beta _2} \end{aligned}$$
(70d)

Values of the elliptical integral type \(I_{21} (0)\) must be calculated by a numerical integration regarding real variable t (see Appendix 4).

Appendix 2: Derivation of function \(P_1 (t_1 )\)

Substituting Eqs. (42) and (44) into Eq. (7), the following equation is derived:

$$\begin{aligned} \psi _1 (t_1 )= & {} -\overline{\phi _1 (1/\overline{t_1} )} -\frac{\overline{\omega (1/\overline{t_1} )}}{{\omega }^{'}(t_1 )}{\phi }_1^{'} (t_1 ) \nonumber \\= & {} -\overline{\chi _1 (1/\overline{t_1} )} \overline{P_1 (1/\overline{t_1} )} -\frac{\chi _2 (t_1 )}{t_1}\left[ {\frac{\overline{C_1}}{\pi \chi _2 (1)}I_{21} (0)+\frac{\gamma _1 }{1+\lambda _1}\sum \limits _l {\left\{ {\frac{\overline{a_{1l}} {\xi }_{1l}^{'2}}{\chi _2 ({\xi }_{1l}^{'} )}+\frac{\overline{b_{1l}} {\eta }_{1l}^{'2}}{\chi _2 ({\eta }_{1l}^{'} )}} \right\} }} \right] \nonumber \\&+\sum \limits _{k=1}^N {\frac{A_{1k} \bar{{B}}_k {\zeta }_k^{'2} }{{\zeta }_k^{'} -t_1}} +(\hbox {regular terms in}\,S_1^+ ) \end{aligned}$$
(71)

The equation above has poles at \(t_1 ={\zeta }_k^{'}(k=1,2,3,\ldots ,N)\). When \(\overline{\chi _1 (1/\overline{t_1} )} \overline{P_1 (1/\overline{t_1} )} \) is expanded to Laurent series at \(t_1 ={\zeta }_k^{'}, \overline{\chi _1 (1/\overline{t_1 } )} \overline{P_1 (1/\overline{t_1} )} \) is expressed as:

$$\begin{aligned} \overline{\chi _1 (1/\overline{t_1} )} \overline{P_1 (1/\overline{t_1} )} =\sum \limits _{k=1}^N {\frac{\overline{\chi _1 (1/\overline{{\zeta }_k^{'}} )} \bar{{q}}_k}{{\zeta }_k^{'} -t_1}} +(\hbox {regular terms at}\,t_1 ={\zeta }_k^{'}) \end{aligned}$$
(72)

The unknown constant \(\bar{{q}}_k \) is determined so that \(\psi _1 (t_1 )\) is regular at \(t_1 ={\zeta }_k^{'} \) as follows:

$$\begin{aligned} \bar{{q}}_k =\frac{A_{1k} \bar{{B}}_k {\zeta }_k^{'2}}{\overline{\chi _1 (1/\overline{{\zeta }_k{'}} )}} \end{aligned}$$
(73)

\(\therefore \)

$$\begin{aligned} P_1 (t_1 )=-\sum \limits _{k=1}^N {\frac{\overline{A_{1k}} B_k }{\chi _1 (\zeta _k )(\zeta _k -t_1 )}} \end{aligned}$$
(74)

Appendix 3: Determination of \(a_{1l} ,\hbox {b}_{1l},\xi _{1l} ,\eta _{1l} \)

Using Eqs. (30) and (45), function \(\Theta _1 (t_1 )\) expressed by Eq. (16) is expressed as follows:

$$\begin{aligned} \Theta _1 (t_1 )= & {} \phi _1 (t_1 )+\overline{\phi _2 (1/\overline{t_1} )} \nonumber \\= & {} H_1 (t_1 )+\overline{H_2 (1/\bar{{t}}_1 )} +\frac{\gamma _2 }{1+\lambda _2}\sum \limits _l {\left\{ {\overline{a_{2l}} {\xi }_{2l}^{'} +\overline{b_{2l}} {\eta }_{2l}^{'}} \right\} } \nonumber \\&+\frac{\chi _1 (t_1 )}{t_1}\left\{ {\sum \limits _{k=1}^N {\frac{A_{2k} \bar{{B}}_k {\zeta }_k^{'2}}{\chi _1 ({\zeta }_k^{'} )}+\frac{\gamma _2}{1+\lambda _2}\sum \limits _l {\frac{\overline{a_{2l}} {\xi }_{2l}^{'2}}{\chi _1 ({\xi }_{2l}^{'} )}+\frac{\gamma _2 }{1+\lambda _2}\sum \limits _l {\frac{\overline{b_{2l}} {\eta }_{2l}^{'2}}{\chi _1 ({\eta }_{2l}^{'} )}}}}} \right\} \nonumber \\&-\chi _1 (t_1 )\sum \limits _{k=1}^N {\frac{\overline{A_{1k} } B_k}{\chi _1 (\zeta _k )(\zeta _k -t_1 )}} +\chi _1 (t_1 )\sum \limits _{k=1}^N {\frac{A_{2k} \bar{{B}}_k {\zeta }_k^{'2}}{\chi _1 ({\zeta }_k^{'} )({\zeta }_k^{'} -t_1 )}} \nonumber \\&+\frac{\gamma _1}{1+\lambda _1}\sum \limits _l {\left\{ {1-\frac{\chi _1 (t_1 )}{\chi _1 (\xi _{1l} )}} \right\} \frac{a_{1l} }{\xi _{1l} -t_1}} -\frac{\gamma _2}{1+\lambda _2}\sum \limits _l {\left\{ {1-\frac{\chi _1 (t_1 )}{\chi _1 ({\eta }_{2l}^{'} )}} \right\} \frac{\overline{b_{2l}} {\eta }_{2l}^{'2}}{{\eta }_{2l}^{'} -t_1}} \nonumber \\&+\frac{\gamma _1}{1+\lambda _1}\sum \limits _l {\left\{ {1-\frac{\chi _1 (t_1 )}{\chi _1 (\eta _{1l} )}} \right\} \frac{b_{1l}}{\eta _{1l} -t_1}} -\frac{\gamma _2 }{1+\lambda _2}\sum \limits _l {\left\{ {1-\frac{\chi _1 (t_1 )}{\chi _1 ({\xi }_{2l}^{'} )}} \right\} \frac{\overline{a_{2l}} {\xi }_{2l}^{'2}}{{\xi }_{2l}^{'} -t_1}} \end{aligned}$$
(75)

where the following relations were used:

$$\begin{aligned}&\frac{\overline{\chi _2 (1/{\bar{t}}_1 )}}{\overline{\chi _2 (\xi _{2l} )}} =\frac{{\xi }_{2l}^{'2} \chi _1 (t_1 )}{t_1^2 \chi _1 ({\xi }_{2l}^{'} )},\end{aligned}$$
(76a)
$$\begin{aligned}&\frac{\overline{\chi _2 (1/\bar{{t}}_1 )}}{\overline{\chi _2 (\eta _{2l} )}}=\frac{{\eta }_{2l}^{'2} \chi _1 (t_1 )}{t_1^2 \chi _1 ({\eta }_{2l}^{'} )}, \end{aligned}$$
(76b)
$$\begin{aligned}&\frac{\overline{\chi _2 (1/{\bar{t}}_1 )}}{\overline{\chi _2 (\zeta _k )}}=\frac{{\zeta }_k^{'2} \chi _1 (t_1 )}{t_1^2 \chi _1 ({\zeta }_k^{'} )} \end{aligned}$$
(76c)
$$\begin{aligned}&{\xi }_{2l}^{'} \equiv 1/\overline{\xi _{2l}} , \end{aligned}$$
(76d)
$$\begin{aligned}&{\eta }_{2l}^{'} \equiv 1/\overline{\eta _{2l}} \end{aligned}$$
(76e)

It was derived that the following term in Eq. (75) was zero, using Eq. (48):

$$\begin{aligned} H_1 (t_1 )+\overline{H_2 (1/\bar{{t}}_1 )} +\frac{\chi _1 (t_1 )}{t_1}\left\{ {\sum \limits _{k=1}^N {\frac{A_{2k} \bar{{B}}_k {\zeta }_k^{'2}}{\chi _1 ({\zeta }_k^{'} )}+\frac{\gamma _2}{1+\lambda _2}\sum \limits _l {\frac{\overline{a_{2l}} {\xi }_{2l}^{'2}}{\chi _1 ({\xi }_{2l}^{'} )}+\frac{\gamma _2}{1+\lambda _2}\sum \limits _l {\frac{\overline{b_{2l}} {\eta }_{2l}^{'2}}{\chi _1 ({\eta }^{'}_{2l} )}}}}} \right\} =0 \end{aligned}$$
(77)

where \(H_1 (t_1)\) and \(\overline{H_2 (1/\bar{{t}}_1 )} \) are obtained by Eq. (40). Also, the constant term

$$\begin{aligned} \frac{\gamma _2}{1+\lambda _2}\sum \limits _l {\left\{ {\overline{a_{2l}} {\xi }_{2l}^{'} +\overline{b_{2l}} {\eta }_{2l}^{'}} \right\} } \end{aligned}$$
(78)

is included in the arbitrariness of the stress function. The function \(\Theta _1 (t_1 )\) expressed by Eq. (75) is the same as the function \(\Theta _1 (t_1 )\) expressed by Eq. (28) and Eq. (18), i.e.,

$$\begin{aligned} \Theta _1 (t_1 )=\sum \limits _l {\frac{a_{1l}}{\xi _{1l} -t_1}} +\sum \limits _l {\frac{b_{1l}}{\eta _{1l} -t_1}} \end{aligned}$$
(79)

Because Eqs. (75) and (79) are the same equation, these equations have the same poles inside and outside regions, \(S_1^+ \) and \(S_1^- \), respectively. From this condition, the following relations are obtained:

$$\begin{aligned} \xi _{1l}= & {} {\eta }_{2l}^{'} =\zeta _k \end{aligned}$$
(80a)
$$\begin{aligned} \eta _{1l}= & {} {\xi }_{2l}^{'} ={\zeta }_k^{'} \end{aligned}$$
(80b)

And coefficients of terms including \(\chi _1 (t_1 )\) and not including \(\chi _1 (t_1 )\) must equal at the same poles inside and outside regions, \(S_1^+ \) and \(S_1^- \), respectively. Comparing the coefficients, the following relations are obtained:

$$\begin{aligned} a_{1l}= & {} -\bar{{A}}_{1k} B_k \end{aligned}$$
(81a)
$$\begin{aligned} b_{1l}= & {} A_{2k} \bar{{B}}_k {\zeta }_k^{'2} \end{aligned}$$
(81b)

For material II, the same procedure is done, and the coefficients are expressed by exchanging suffixes \(j=1\) and 2. Then, Eqs. (49) and (50) are obtained.

Appendix 4: First derivative of functions \(F_{j1} (t_j )\)

The first derivative of function \(F_{j1} (t_j )\) which is defined in Eq. (38c) is obtained as follows [19]:

$$\begin{aligned} {F}_{j1}^{'} (t_j )=\frac{i}{2}\frac{y_j (t_j )}{y_j (1)}\left[ {\begin{array}{l} I_{j1} (2)-2iI_{j1} (1)\left\{ {1-\frac{m_j}{1-\alpha _1 }-\frac{1-m_j}{1-\beta _1}-\frac{m_j}{1-\alpha _2}-\frac{1-m_j }{1-\beta _2}} \right\} \\ \quad -I_{j1} (0)\left\{ {\frac{m_j (1+\alpha _1 )(1+\alpha _2 )}{(1-\alpha _1 )(1-\alpha _2 )}+\frac{(1-m_j )(1+\beta _1 )(1+\beta _2 )}{(1-\beta _1 )(1-\beta _2 )}} \right\} \\ \quad +\frac{4I_{j1} (0)\left\{ {(1-m_j )(t_j -\alpha _1 )(t_j -\alpha _2 )+m_j (t_j -\beta _1 )(t_j -\beta _2 )} \right\} }{(1-\alpha _1 )(1-\beta _1 )(1-\alpha _2 )(1-\beta _2 )} \\ \end{array}} \right] \end{aligned}$$
(82)

where

$$\begin{aligned} y_j (t_j )=\frac{\chi _j (t_j )}{\mathop \Pi \limits _{k=1}^2 (t_j -\alpha _k )(t_j -\beta _k )} \end{aligned}$$
(83)

\(\chi _j (t_j )\) is given by Eq. (22).

Variables \(t_{\alpha _1} , t_{\beta _1} , t_{\alpha _2} \), and \(t_{\beta _2}\) are given in Eq. (70d). \(I_{j1} (n)(n=0,1,2)\) is defined by the following equations:

$$\begin{aligned} I_{j1} (n)= & {} \int \nolimits _{t_{\beta _{1}}}^{t_{\alpha _{1}}} {\frac{t^{n}}{\chi _{jt} (t)}} \hbox {d}t\quad (n=0,1,2) \end{aligned}$$
(84)
$$\begin{aligned} \chi _{jt} (t)= & {} (t-t_{\alpha _1} )^{m_j}(t-t_{\beta _1} )^{1-m_j }(t-t_{\alpha _2} )^{m_j}(t-t_{\beta _2} )^{1-m_j} \end{aligned}$$
(85)

The above integrals of elliptical type \(I_{j1} (n)(n=0,1,2)\) must be obtained by a numerical integration with respect to the real variable t (see Eq. 68b).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasebe, N., Kato, S. Solution of a bonded bimaterial problem of two interfaces subjected to different temperatures. Arch Appl Mech 86, 445–464 (2016). https://doi.org/10.1007/s00419-015-1040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1040-5

Keywords

Navigation