Advertisement

Glycolaldehyde induces sensory neuron death through activation of the c-Jun N-terminal kinase and p-38 MAP kinase pathways

  • Tomoyo Akamine
  • Shizuka Takaku
  • Mari Suzuki
  • Naoko Niimi
  • Hideji Yako
  • Keiichiro Matoba
  • Daiji Kawanami
  • Kazunori Utsunomiya
  • Rimei Nishimura
  • Kazunori SangoEmail author
Short Communication
  • 113 Downloads

Abstract

Glycolaldehyde (GA) is a highly reactive hydroxyaldehyde and one of the glycolytic metabolites producing advanced glycation endproducts (AGEs), but its toxicity toward neurons and Schwann cells remains unclear. In the present study, we found that GA exhibited more potent toxicity than other AGE precursors (glyceraldehyde, glyoxal, methylglyoxal and 3-deoxyglucosone) against immortalized IFRS1 adult rat Schwann cells and ND7/23 neuroblastoma × neonatal rat dorsal root ganglion (DRG) neuron hybrid cells. GA affected adult rat DRG neurons and ND7/23 cells more severely than GA-derived AGEs, and exhibited concentration- and time-dependent toxicity toward ND7/23 cells (10 < 100 < 250 < 500 µM; 6 h < 24 h). Treatment with 500 µM GA significantly up-regulated the phosphorylation of c-jun N-terminal kinase (JNK) and p-38 mitogen-activated kinase (p-38 MAPK) in ND7/23 cells. Furthermore, GA-induced ND7/23 cell death was significantly inhibited due to co-treatment with 10 µM of the JNK inhibitor SP600125 or the p-38 MAPK inhibitor SB239063. These findings suggest the involvement of JNK and p-38 MAPK-signaling pathways in GA-induced neuronal cell death and that enhanced GA production under diabetic conditions might be involved in the pathogenesis of diabetic neuropathy.

Keywords

Diabetic neuropathy Sensory neurons Schwann cells Viability Glycolytic metabolites Mitogen-activated protein kinase signaling 

Abbreviations

AGEs

Advanced glycation endproducts

3-DG

3-Deoxyglucosone

DRG

Dorsal root ganglia

ER

Endoplasmic reticulum

GA

Glycolaldehyde

GLA

Glyceraldehyde

GO

Glyoxal

IFRS1

Immortalized adult Fischer rat Schwann cell 1

JNK

c-Jun N-terminal kinase

MAPK

Mitogen-activated protein kinase

MG

Methylglyoxal

PNS

Peripheral nervous system

Notes

Acknowledgements

This study was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (JSPS KAKENHI 16K07048). We would like to thank Prof. Atsufumi Kawabata and Dr. Fumiko Sekiguchi (Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan) for providing us ND7/23 cells, and Prof. Shuji Mori (Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan) for helpful suggestions on AGEs’ preparation.

Author contributions

TA designed and conducted the experiments, and wrote the manuscript. ST, MS, NN, HY, KM, DK, KU, and RN conducted the experiments and discussed the results. KS designed the experiments, wrote the manuscript, and supervised the project.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Agthong S, Kaewsema A, Chentanez V (2012) Inhibition of p38 MAPK reduces loss of primary sensory neurons after nerve transection. Neurol Res 34:714–720PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al-Maghrebi M, Al-Mulla F, Benov L (2003) Glycolaldehyde induces apoptosis in a human breast cancer cell line. Arch Biochem Biophys 417:123–127PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bierhaus A, Fleming T, Stoyanov S, Leffler A, Babes A, Neacsu C, Sauer KS, Eberhardt MM, Schnölzer M, Lasitschka F, Neuhuber LW, Kichko IT, Konrade I, Elvert R, Mier W, Pirags V, Lukic KI, Morcos M, Dehmer T, Rabbani N, Thornalley JP, Edelstein D, Nau C, Forbes J, Humpert MP, Schwaninger M, Ziegler D, Stern MD, Cooper EM, Haberkorn U, Brownlee M, Reeh WP, Nawroth PP (2012) Methylgloxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 18:926–933PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bikbova G, Oshitari T, Yamamoto S (2013) Neurite regeneration in adult rat retinas exposed to advanced glycation end-products and regenerative effects of neurotrophin-4. Brain Res 1534:33–45PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bodner A, Toth PT, Miller RJ (2004) Activation of c-Jun N-terminal kinase mediates gp120IIIB- and nucleoside analogue-induced sensory neuron toxicity. Exp Neurol 188:246–253PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bose AK, Janes KA (2013) A high-throughput assay for phosphoprotein-specific phosphatase activity in cellular extracts. Mol Cell Proteomics 12:797–806PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brings S, Fleming T, Freichel M, Muckenthaler M, Herzig S, Nawroth P (2017) Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int J Mol Sci 2017:18Google Scholar
  8. Cellek S, Qu W, Schmidt AM, Moncada S (2004) Synergistic action of advanced glycation end products and endogenous nitric oxide leads to neuronal apoptosis in vitro: a new insight into selective nitrergic neuropathy in diabetes. Diabetologia 47:331–339PubMedCrossRefPubMedCentralGoogle Scholar
  9. Choei H, Sasaki N, Takeuchi M, Yoshida T, Ukai W, Yamagishi S, Saito T (2004) Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathol 108:189–193PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chu JM, Lee DK, Wong DP, Wong GT, Yue KK (2016) Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals. Metab Brain Dis 31:1055–1064PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chun HJ, Lee Y, Kim AH, Lee J (2016) Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis. Neurotox Res 29:419–431PubMedCrossRefPubMedCentralGoogle Scholar
  12. Fukunaga M, Miyata S, Liu B, Miyazaki H, Hirota Y, Higo S, Hamada Y, Ueyama S, Kasuga M (2004) Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells. Biochem Biophys Res Commun 320:689–695PubMedCrossRefPubMedCentralGoogle Scholar
  13. Grisold A, Callaghan B, Feldman E (2017) Mediators of diabetic neuropathy—is hyperglycemia the only culprit? Curr Opin Endcrinol Diabetes Obes 24:103–111CrossRefGoogle Scholar
  14. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912PubMedCrossRefPubMedCentralGoogle Scholar
  15. Kikuchi S, Shinpo K, Moriwaka F, Makita Z, Miyata T, Tashiro K (1998) Neurotoxicity of methylgloxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved neurodegenerative diseases. J Neurosci Res 57:280–289CrossRefGoogle Scholar
  16. Li W, Zhu J, Dou J, She H, Tao K, Xu H, Yang Q, Mao Z (2017) Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun 8:1763PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JC (2010a) Circulating glycoaldehyde induces oxidative damage in the kidney of rats. Diabetes Res Clin Pract 89:262–267PubMedCrossRefPubMedCentralGoogle Scholar
  18. Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JC (2010b) Glycolaldehyde induces oxidative stress in the heart: a clue to diabetic cardiomyopathy? Cardiovasc Toxicol 10:244–249PubMedCrossRefPubMedCentralGoogle Scholar
  19. Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JC (2011) Oxidative damage in the liver of rats treated with glycolaldehyde. Int J Toxicol 30:253–258PubMedCrossRefGoogle Scholar
  20. Luo ZJ, King RH, Lewin J, Thomas PK (2002) Effects of nonenzymatic glycosylation of extracellular matrix components on cell survival and sensory neurite extension in cell culture. J Neurol 249:424–431PubMedCrossRefGoogle Scholar
  21. Nam MH, Son WR, Lee YS, Lee KW (2015) Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium. Cell Commun Adhes 22:67–78PubMedCrossRefGoogle Scholar
  22. Navarrete Santos A, Jacobs K, Simm A, Glaubitz N, Horstkorte R, Hofmann B (2017) Dicarbonyls induce senescence of human vascular endothelial cells. Mech Ageing Dev 166:22–32CrossRefGoogle Scholar
  23. Neganova I, Shmeleva E, Munkley J, Chichagova V, Anyfantis G, Anderson R, Passos J, Elliott DJ, Armstrong L, Lako M (2016) JNK/SAPK signaling is essential for efficient reprogramming of human fibroblasts to induced pluripotent stem cells. Stem Cells 34:1198–1212PubMedPubMedCentralCrossRefGoogle Scholar
  24. Niimi N, Yako H, Takaku S, Kato H, Matsumoto T, Nishito Y, Watabe K, Ogasawara S, Mizukami H, Yagihashi S, Chung SK, Sango K (2018) A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism. J Neurochem 144:710–722PubMedCrossRefPubMedCentralGoogle Scholar
  25. Nishizawa Y, Wada R, Baba M, Takeuchi M, Hanyu-Itabashi C, Yagihashi S (2010) Neuropathy induced by exogenously administered advanced glycation end-products in rats. J Diabetes Investig 1:40–49PubMedPubMedCentralCrossRefGoogle Scholar
  26. North AJ, Gimona M, Lando Z, Small JV (1994) Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci 107:445–455PubMedPubMedCentralGoogle Scholar
  27. Ota K, Nakamura J, Li W, Kozakae M, Watarai A, Nakamura N, Yasuda Y, Nakashima E, Naruse K, Watabe K, Kato K, Oiso Y, Hamada Y (2007) Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells. Biochem Biophys Res Commun 357:270–275PubMedCrossRefPubMedCentralGoogle Scholar
  28. Pugazhenthi S, Qin L, Reddy PH (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta 1863:1037–1045CrossRefGoogle Scholar
  29. Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K (2011) Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 89:898–908PubMedCrossRefPubMedCentralGoogle Scholar
  30. Sato K, Tatsunami R, Yama K, Tampo Y (2013) Glycolaldehyde induces cytotoxicity and increases glutathione and multidrug-resistance-associated protein levels in Schwann cells. Biol Pharm Bull 36:1111–1117PubMedCrossRefPubMedCentralGoogle Scholar
  31. Sato K, Tatsunami R, Yama K, Tampo Y (2015) Glycolaldehyde induces endoplasmic reticulum stress and apoptosis in Schwann cells. Toxicol Rep 2:1454–1462PubMedPubMedCentralCrossRefGoogle Scholar
  32. Schönhofen P, de Meiros LM, Bristot IJ, Lopes FM, De Bastiani MA, Kapczinski F, Crippa JA, Castro MA, Parsons RB, Klame F (2015) Cannabidiol exposure during neuronal differentiation sensitizes cells against redox-active neurotoxins. Mol Neurobiol 52:26–37PubMedCrossRefPubMedCentralGoogle Scholar
  33. Scuteri A, Galimberti A, Ravasi M, Pasini S, Donzelli E, Cavaletti G, Tredici G (2010) NGF protects dorsal root ganglion neurons from oxaliplatin by modulating JNK/Sapk and ERK1/2. Neurosci Lett 486:141–145PubMedCrossRefPubMedCentralGoogle Scholar
  34. Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S (2004) Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 320:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  35. Shimizu F, Sano Y, Haruki H, Kanda T (2011) Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-β and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 54:1517–1526PubMedCrossRefPubMedCentralGoogle Scholar
  36. Suzuki K, Ho Koh Y, Mizuno H, Hamaoka R, Taniguchi N (1998) Overexpression of aldehyde reductase protects PC12 cells from the cytotoxicity of methylglyoxal or 3-deoxyglucosone. J Biochem 123:353–357PubMedCrossRefPubMedCentralGoogle Scholar
  37. Takeuchi M, Bucala R, Suzuki T, Ohkubo T, Yamazaki M, Koike T, Kameda Y, Makita Z (2000) Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol 59:1094–1105PubMedCrossRefPubMedCentralGoogle Scholar
  38. Takeuchi M, Takino J, Furuno S, Shirai H, Kawakami M, Muramatsu M, Kobayashi Y, Yamagishi S (2015) Assessment of the concentrations of various advanced glycation end-products in beverages and foods that are commonly consumed in Japan. PLoS One 10:e0118652PubMedPubMedCentralCrossRefGoogle Scholar
  39. Tsukamoto M, Niimi N, Sango K, Takaku S, Kanazawa Y, Utsunomiya K (2015a) Neurotrophic and neuroprotective properties of exendin-4 in adult rat dorsal root ganglion neurons: involvement of insulin and RhoA. Histochem Cell Biol 144:249–259PubMedCrossRefPubMedCentralGoogle Scholar
  40. Tsukamoto M, Sango K, Yanagisawa H, Watabe K, Utsunomiya K (2015b) Upregulation of galectin-3 in immortalized Schwann cells IFRS1 under diabetic conditions. Neurosci Res 92:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  41. Wood JN, Bevan SJ, Coote PR, Dunn PM, Harmar A, Hogan P, Latchman DS, Morrison C, Rougon G, Theveniau M, Wheatley S (1990) Novel cell lines display properties of nociceptive sensory neurons. Proc Biol Sci 241:187–194PubMedCrossRefPubMedCentralGoogle Scholar
  42. Yagihashi S (2016) Glucotoxic mechanisms and related therapeutic approaches. Int Rev Neurobiol 127:121–149PubMedCrossRefPubMedCentralGoogle Scholar
  43. Yamabe S, Hirose J, Uehara Y, Okada T, Okamoto N, Oka K, Taniwaki T, Mizuta H (2013) Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes. FEBS J 280:1617–1629PubMedCrossRefPubMedCentralGoogle Scholar
  44. Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 290:973–978PubMedCrossRefPubMedCentralGoogle Scholar
  45. Yang K, Feng C, Lip H, Bruce WR, O’Brien PJ (2011) Cytotoxic molecular mechanisms and cytoprotection by enzymic metabolism or autoxidation for glyceraldehyde, hydroxypyruvate and glycolaldehyde. Chem Biol Interact 191:315–321PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tomoyo Akamine
    • 1
    • 2
  • Shizuka Takaku
    • 1
  • Mari Suzuki
    • 1
  • Naoko Niimi
    • 1
  • Hideji Yako
    • 1
  • Keiichiro Matoba
    • 2
  • Daiji Kawanami
    • 4
  • Kazunori Utsunomiya
    • 3
  • Rimei Nishimura
    • 2
  • Kazunori Sango
    • 1
    Email author
  1. 1.Diabetic Neuropathy Project, Department of Sensory and Motor SystemsTokyo Metropolitan Institute of Medical ScienceTokyoJapan
  2. 2.Division of Diabetes, Metabolism and Endocrinology, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
  3. 3.Center for Preventive MedicineThe Jikei University School of MedicineTokyoJapan
  4. 4.Department of Endocrinology and Diabetes MellitusFukuoka University School of MedicineFukuokaJapan

Personalised recommendations