Advertisement

Reorganization of the nuclear compartments involved in transcription and RNA processing in myonuclei of type I spinal muscular atrophy

  • María S. Castillo-Iglesias
  • María T. Berciano
  • J. Oriol Narcis
  • J. Fernando Val-Bernal
  • José C. Rodriguez-Rey
  • Olga TapiaEmail author
  • Miguel LafargaEmail author
Short Communication
  • 64 Downloads

Abstract

Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by the loss or mutation of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to the degeneration of motor neurons and muscular atrophy. In this study, we analyzed the nuclear reorganization in human skeletal myofibers from a type I SMA patient carrying a deletion of exons 7 and 8 in the SMN1 gene and two SMN2 gene copies and showing reduced SMN protein levels in the muscle compared with those in control samples. The morphometric analysis of myofiber size revealed the coexistence of atrophic and hypertrophic myofibers in SMA samples. Compared with controls, both nuclear size and the nuclear shape factor were significantly reduced in SMA myonuclei. Nuclear reorganization in SMA myonuclei was characterized by extensive heterochromatinization, the aggregation of splicing factors in large interchromatin granule clusters, and nucleolar alterations with the accumulation of the granular component and a loss of fibrillar center/dense fibrillar component units. These nuclear alterations reflect a severe perturbation of global pre-mRNA transcription and splicing, as well as nucleolar dysfunction, in SMA myofibers. Moreover, the finding of similar nuclear reorganization in both atrophic and hypetrophic myofibers provides additional support that the SMN deficiency in SMA patients may primarily affect the skeletal myofibers.

Keywords

Spinal muscular atrophy SMN Skeletal myofibers Myonuclei Chromatin Perichromatin region Nuclear speckles Nucleolus 

Notes

Acknowledgements

The authors would like to thank Raquel García-Ceballos for technical assistance. This work was supported by the following grants: “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas” (CIBERNED; CB06/05/0037) Spain, and “Instituto de Investigación Valdecilla” (IDIVAL, Next-Val), Spain.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adriaens C, Serebryannyy LA, Feric M et al (2018) Blank spots on the map: some current questions on nuclear organization and genome architecture. Histochem Cell Biol 150:579–592CrossRefGoogle Scholar
  2. Arnold AS, Gueye M, Guettier-Sigrist S, Courdier-Fruh I, Coupin G, Poindron P, Gies JP (2004) Reduced expression of nicotinic AchRs in myotubes from spinal muscular atrophy I patients. Lab Invest 84:1271–1278CrossRefGoogle Scholar
  3. Biggiogera M, Burki K, Kaufmann SH, Shaper JH, Gas N, Almaric F et al (1990) Nucleolar distribution of proteins B23 and nucleolin in mouse preimplantation embryos as visualized by immunoelectron microscopy. Development 110:1263–1270Google Scholar
  4. Biggiogera M, Cisterna B, Spedito A, Vecchio L, Malatesta M (2008) Perichromatin fibrils as early markers of transcriptional alterations. Differentiation 76:57–65CrossRefGoogle Scholar
  5. Boyer JG, Ferrier A, Kothary R (2013) More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Frontiers Physiol 4:a356CrossRefGoogle Scholar
  6. Braun S, Croizat B, Lagrance MG, Warter JM, Poindron P (1995) Constitutive muscular abnormalities in culture in spinal muscular atrophy. Lancet 345:694–695CrossRefGoogle Scholar
  7. Bricceno KV, Martinez T, Leikina E et al (2014) Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Gent 23:4745–4757CrossRefGoogle Scholar
  8. Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609CrossRefGoogle Scholar
  9. Burlet P, Huber C, Bertrandy S, Ludosky MA, Zwaenepoel I, Clermont O, Roume I, Delezoide AL, Cartaud J, Munnich A et al (1998) The distribution of the SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet 7:1927–1933CrossRefGoogle Scholar
  10. Chaytow H, Huang Y-T, Gillingwater TH, Faller KME (2018) The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 785:3877–3894CrossRefGoogle Scholar
  11. Cifuentes-Diaz C, Frugier T, Tiziano FD, Lacene E, Roblot N, Joshi V, Moreau MH, Melki J (2001) Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J Cell Biol 152:1107–1114CrossRefGoogle Scholar
  12. Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214CrossRefGoogle Scholar
  13. Dubowitz V, Sewry CA (2007) Muscle Biopsy. Practical Approach, Saunders-ElsevierGoogle Scholar
  14. Fidzianska A, Hausmanowa-Petrusewicz I (2003) Architectural abnormalities in muscle nuclei. Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. J Neurol Sci 210:47–51CrossRefGoogle Scholar
  15. Frugier T, Nicole S, Cifuentes-Diaz C, Melki J (2002) The molecular bases of spinal muscular atrophy. Curr Opin Genet Dev 12:294–298CrossRefGoogle Scholar
  16. Galganski L, Urbanek MO, Krzyzosiak WJ (2017) Nuclear speckles: molecular organization, biological functions and role in disease. Nucleic Acid Res 45:10350–10368CrossRefGoogle Scholar
  17. Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300CrossRefGoogle Scholar
  18. Gavrilov DK, Shi X, Das K, Gilliam TC, Wang CH (1998) Differential SMN2 expression associated with SMA severity. Nat Genet 20:230–231CrossRefGoogle Scholar
  19. Groen EJN, Perenthaler E, Cortney NL et al (2018) Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy. Hum Mol Genet 27:2851–2862CrossRefGoogle Scholar
  20. Guettier-Sigrist S, Hubel B, Coupin G, Freyssinet JM, Poindron P, Warter JM (2002) Possible pathogenic role of muscle cell dysfunction in motor neuron death in spinal muscular atrophy. Muscle Nerve 25:700–708CrossRefGoogle Scholar
  21. Huang S, Spector DL (1996) Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J Cell Biol 131:719–732CrossRefGoogle Scholar
  22. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, Hodzic D, Wirtz D (2009) A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci USA 106:19017–19022CrossRefGoogle Scholar
  23. Kolb SJ, Kissel JT (2011) Spinal muscular atrophy. Arch Neurol 68:979–984CrossRefGoogle Scholar
  24. Kornblihtt AR, de la Mata M, Fededa JP, Muñoz MJ, Nogués G (2004) Multiple links between transcription and splicing. RNA 10:1489–1498CrossRefGoogle Scholar
  25. Lafarga M, Tapia O, Romero AM, Berciano MT (2017) Cajal bodies in neurons. RNA Biol 14:712–725CrossRefGoogle Scholar
  26. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612CrossRefGoogle Scholar
  27. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165CrossRefGoogle Scholar
  28. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269CrossRefGoogle Scholar
  29. Lemaitre C, Bickmore WA (2015) Chromatin at the nuclear periphery and the regulation of genome function. Histochem Cell Biol 144:111–122CrossRefGoogle Scholar
  30. Lorson CL, Rindt H, Shababi M (2010) Spinal muscular atrophy. Mechanisms and therapeutic strategies. Hum Mol Genet 19:R111–R118CrossRefGoogle Scholar
  31. Machyna M, Heyn P, Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4:17–34CrossRefGoogle Scholar
  32. Maita R, Strauss M, Anselmi M (2009) Skeletal muscle for endomyocardial biopsy: comparable stress response in doxorubicin cardio-myopathy. J Toxicol Pathol 22:273–279CrossRefGoogle Scholar
  33. Martinez-Hernandez R, Soler-Botija C, Also E, Elias L, Caselles L, Gich I, Bernal S, Tizzano EF (2009) The developmental pattern of myotubes in spinal muscular atrophy indicates prenatal delay of muscle maturation. J Neuropathol Exp Neurol 68:474–481CrossRefGoogle Scholar
  34. Masiello I, Siciliani S, Biggiogera M (2018) Perichromatin region: a moveable feast. Hitochem Cell Biol 150:227–233CrossRefGoogle Scholar
  35. Matera AG, Wang Z (2014) A day in the life of spliceosome. Nat Rev Mol Cell Biol 15:108–121CrossRefGoogle Scholar
  36. Melcák I, Melcácová S, Kopsky V, Vecerová J, Raska I (2001) Prespliceosomal assembly on microinjected precursor mRNA takes place in nuclear speckles. Mol Biol Cell 12:393–406CrossRefGoogle Scholar
  37. Mentis GZ, Blivis D, Liuy W, Drobac E, Crowder ME, Kong L, Alvarez FJ, Sumner CJ, O’Donovan MJ (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453–467CrossRefGoogle Scholar
  38. Monani UR (2005) Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 48:885–896CrossRefGoogle Scholar
  39. Mukherjee RN, Chen P, Levy DL (2016) Recent advances in understanding nuclear size and shape. Nucleus 7:167–186CrossRefGoogle Scholar
  40. O’Keefe RT, Mayeda A, Sadowski CL, Krainer AR, Spector DL (1994) Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J Cell Biol 124:249–260CrossRefGoogle Scholar
  41. Park Y-E, Hayashi YK, Goto K, Komaki H, Hayashi Y, Inuzuka T, Noguchi S, Nonaka I, Nishino I (2009) Nuclear changes in skeletal muscle extend to satellite cells in autosomal dominant Enery-Dreyfuss muscular dystrophy/limb-girdlemuscular dystrophy 1B. Neuromuscul Disord 19:29–36CrossRefGoogle Scholar
  42. Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263CrossRefGoogle Scholar
  43. Puckelwartz MJ, Kessler E, Zhang Y et al (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620CrossRefGoogle Scholar
  44. Puvion-Dutilleul F, Mazan S, Nicoloso M, Pichard E, Bachellerie JP, Puvion E (1992) Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol 58:149–162Google Scholar
  45. Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG (2007) A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J Cell Biol 176:831–841CrossRefGoogle Scholar
  46. Sato S, Burgess SB, McIlwain DI (1994) Transcription and motoneuron size. J Neurochem 63:1609–1615CrossRefGoogle Scholar
  47. Sewry CA, Brown SC, Mercuri E et al (2001) Skeletal muscle pathology in autosomal Emery-Dreyfuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol 27:281–290CrossRefGoogle Scholar
  48. Smirnov E, Cmarko D, Mazel T, Hornacek M, Raska I (2016) Nucleolar DNA: the host and the guests. Histochem Cell Biol 145:359–372CrossRefGoogle Scholar
  49. Soler-Botija C, Ferrer I, Gich I, Baiget M, Tizzano EF (2002) Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord. Brain 125:1624–1634CrossRefGoogle Scholar
  50. Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 14:1892–1905CrossRefGoogle Scholar
  51. Tapia O et al (2012) Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 137:657–667CrossRefGoogle Scholar
  52. Tapia et al (2017) Cellular bases of the RNA metabolism dysfunction in motor neurons of a murine model of spinal muscular atrophy: role of Cajal bodies and nucleolus. Neurobiol Dis 108:83–99CrossRefGoogle Scholar
  53. Van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791CrossRefGoogle Scholar
  54. Walker MP, Rajemdra TK, Saieva L, Fuentes JL, Pellizzoni L, Matera AG (2008) SMN complex localizes to sarcomeric Z-disc and is a proteolytic target of calpain. Hum Mol Genet 17:3399–3410CrossRefGoogle Scholar
  55. Wang S, Reuveny A, Volk T (2015) Nesprin provide elastic properties to muscle nuclei by cooperating with spectraplakin and EB1. J Cell Biol 209:529–538CrossRefGoogle Scholar
  56. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:1477–1486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • María S. Castillo-Iglesias
    • 1
  • María T. Berciano
    • 2
  • J. Oriol Narcis
    • 1
  • J. Fernando Val-Bernal
    • 3
  • José C. Rodriguez-Rey
    • 2
  • Olga Tapia
    • 1
    Email author
  • Miguel Lafarga
    • 1
    Email author
  1. 1.Departamento de Anatomía y Biología Celular and “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)”Universidad de Cantabria-IDIVALSantanderSpain
  2. 2.Departamento de Biología MolecularUniversidad de Cantabria-IDIVALSantanderSpain
  3. 3.Unidad de Patología, Departamento de Ciencias Médicas y QuirúrgicasUniversidad de Cantabria-IDIVALSantanderSpain

Personalised recommendations