Novel methods in adrenal research: a metabolomics approach

  • Thomas G. Papathomas
  • Na Sun
  • Vasileios Chortis
  • Angela E. Taylor
  • Wiebke Arlt
  • Susan Richter
  • Graeme Eisenhofer
  • Gerard Ruiz-Babot
  • Leonardo Guasti
  • Axel Karl WalchEmail author


Metabolic alterations have implications in a spectrum of tissue functions and disease. Aided by novel molecular biological and computational tools, our understanding of physiological and pathological processes underpinning endocrine and endocrine-related disease has significantly expanded over the last decade. Herein, we focus on novel metabolomics-related methodologies in adrenal research: in situ metabolomics by mass spectrometry imaging, steroid metabolomics by gas and liquid chromatography–mass spectrometry, energy pathway metabologenomics by liquid chromatography–mass spectrometry-based metabolomics of Krebs cycle intermediates, and cellular reprogramming to generate functional steroidogenic cells and hence to modulate the steroid metabolome. All four techniques to assess and/or modulate the metabolome in biological systems provide tremendous opportunities to manage neoplastic and non-neoplastic disease of the adrenal glands in the era of precision medicine. In this context, we discuss emerging clinical applications and/or promising metabolic-driven research towards diagnostic, prognostic, predictive and therapeutic biomarkers in tumours arising from the adrenal gland and extra-adrenal paraganglia as well as modern approaches to delineate and reprogram adrenal metabolism.


Adrenal glands In situ metabolomics Steroid metabolomics Metabologenomics Cellular reprogramming 



Dr. Papathomas is supported by the Pathological Society of Great Britain and Ireland (PathSoc 2018 Visiting Fellowship). Dr. Chortis is supported by the Academy of Medical Sciences (Starter Grant for Clinical Lecturers). Dr. Arlt and Dr Eisenhofer are supported by the European Commission Horizon 2020 Programme under Grant agreement 633893 (ENSAT-HT). Drs. Eisenhofer and Richter are supported by Grants from Deutsche Forschungsgemeinschaft (CRC/Transregio 205) and the Paradifference foundation. Dr. Walch is supported by the Ministry of Education and Research of the Federal Republic of Germany (BMBF; 01ZX1210B and 01KT1615), the Deutsche Forschungsgemeinschaft (SFB 824 C4, CRC/Transregio 205/1) and the Deutsche Krebshilfe (70112617).


  1. Andronesi OC, Kim GS, Gerstner E et al (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra4CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arlt W, Walker EA, Draper N et al (2004) Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet 363:2128–2135CrossRefPubMedGoogle Scholar
  3. Arlt W, Biehl M, Taylor AE et al (2011) Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J Clin Endocrinol Metab 96:3775–3784CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arlt W, Lang K, Sitch AJ et al (2017) Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ballester LY, Lu G, Zorofchian S et al (2018) Analysis of cerebrospinal fluid metabolites in patients with primary or metastatic central nervous system tumors. Acta Neuropathol Commun 6:85CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bancos I, Arlt W (2017) Diagnosis of a malignant adrenal mass: the role of urinary steroid metabolite profiling. Curr Opin Endocrinol Diabetes Obes 24:200–207CrossRefPubMedGoogle Scholar
  7. Baranowski ES, Arlt W, Idkowiak J (2018) Monogenic disorders of adrenal steroidogenesis. Horm Res Paediatr 89:292–310CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bensing S, Brandt L, Tabaroj F et al (2008) Increased death risk and altered cancer incidence pattern in patients with isolated or combined autoimmune primary adrenocortical insufficiency. Clin Endocrinol (Oxf) 69:697–704CrossRefGoogle Scholar
  9. Bergthorsdottir R, Leonsson-Zachrisson M, Odén A et al (2006) Premature mortality in patients with Addison’s disease: a population-based study. J Clin Endocrinol Metab 91:4849–4853CrossRefPubMedGoogle Scholar
  10. Beuschlein F, Reincke M, Arlt W (2017) The impact of Connshing’s syndrome—mild cortisol excess in primary aldosteronism drives diabetes risk. J Hypertens 35:2548CrossRefPubMedGoogle Scholar
  11. Bornstein SR, Allolio B, Arlt W et al (2016) Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 101:364–389CrossRefPubMedGoogle Scholar
  12. Brown SA, Gaspar L (2016) Circadian metabolomics: insights for biology and medicine. In: Sassone-Corsi P, Christen Y (eds) A time for metabolism and hormones [Internet]. Springer, ChamGoogle Scholar
  13. Bruntz RC, Lane AN, Higashi RM et al (2017) Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 292:11601–11609CrossRefPubMedPubMedCentralGoogle Scholar
  14. Buck A, Ly A, Balluff B et al (2015) High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J Pathol 237:123–132CrossRefPubMedGoogle Scholar
  15. Buck A, Balluff B, Voss A et al (2016) How suitable is matrix-assisted laser desorption/ionization-time-of-flight for metabolite imaging from clinical formalin-fixed and paraffin-embedded tissue samples in comparison to matrix-assisted laser desorption/ionization-fourier transform ion cyclotron resonance mass spectrometry? Anal Chem 88:5281–5289CrossRefPubMedGoogle Scholar
  16. Buck A, Aichler M, Huber K et al (2017) In situ metabolomics in cancer by mass spectrometry imaging. Adv Cancer Res 134:117–132CrossRefPubMedGoogle Scholar
  17. Büttler RM, Martens F, Fanelli F et al (2015) Comparison of 7 published LC–MS/MS methods for the simultaneous measurement of testosterone, androstenedione, and dehydroepiandrosterone in serum. Clin Chem 61:1475–1483CrossRefPubMedGoogle Scholar
  18. Cacciatore S, Loda M (2015) Innovation in metabolomics to improve personalized healthcare. Ann N Y Acad Sci 1346:57–62CrossRefPubMedPubMedCentralGoogle Scholar
  19. Calligaris D, Feldman DR, Norton I et al (2015) MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation. Proc Natl Acad Sci USA 112:9978–9983CrossRefPubMedGoogle Scholar
  20. Calsina B, Curras-Freixes M, Buffet A et al (2018) Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genet Med. CrossRefPubMedGoogle Scholar
  21. Cascon A, Comino-Mendez I, Curras-Freixes M et al (2015) Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst. CrossRefPubMedGoogle Scholar
  22. Caulfield MP, Lynn T, Gottschalk ME et al (2002) The diagnosis of congenital adrenal hyperplasia in the newborn by gas chromatography/mass spectrometry analysis of random urine specimens. J Clin Endocrinol Metab 87:3682–3690CrossRefPubMedGoogle Scholar
  23. Chan AO, But BW, Lee CY et al (2013) Diagnosis of 5alpha-reductase 2 deficiency: is measurement of dihydrotestosterone essential? Clin Chem 59:798–806CrossRefPubMedGoogle Scholar
  24. Chortis V (2018) The role of steroid metabolome analysis for the diagnosis and follow-up of adrenocortical tumors. Minerva Endocrinol. CrossRefPubMedGoogle Scholar
  25. Chortis V, Taylor AE, Schneider P et al (2013) Mitotane therapy in adrenocortical cancer induces CYP3A4 and inhibits 5alpha-reductase, explaining the need for personalized glucocorticoid and androgen replacement. J Clin Endocrinol Metab 98:161–171CrossRefPubMedGoogle Scholar
  26. Clark AR, Calligaris D, Regan MS et al (2018) Rapid discrimination of pediatric brain tumors by mass spectrometry imaging. J Neurooncol 140:269–279CrossRefPubMedPubMedCentralGoogle Scholar
  27. Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597CrossRefGoogle Scholar
  28. Collins RRJ, Patel K, Putnam WC et al (2017) Oncometabolites: a new paradigm for oncology, metabolism, and the clinical laboratory. Clin Chem 63:1812–1820CrossRefPubMedGoogle Scholar
  29. Crawford PA, Sadovsky Y, Milbrandt J (1997) Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol Cell Biol 17:3997–4006CrossRefPubMedPubMedCentralGoogle Scholar
  30. de Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications. Wiley-Interscience, New YorkGoogle Scholar
  31. Dilillo M, Heijs B, McDonnell LA (2018) Mass spectrometry imaging: how will it affect clinical research in the future? Expert Rev Proteom 15:709–716CrossRefGoogle Scholar
  32. Eisenhofer G, Klink B, Richter S (2017) Metabologenomics of phaeochromocytoma and paraganglioma: an integrated approach for personalised biochemical and genetic testing. Clin Biochem Rev 38:69–100PubMedPubMedCentralGoogle Scholar
  33. Eisenhofer G, Masjkur J, Peitzsch M et al (2018) Plasma steroid metabolome profiling for diagnosis and subtyping patients with Cushing syndrome. Clin Chem 64:586–596CrossRefPubMedGoogle Scholar
  34. Ellis SR, Soltwisch J, Paine MRL et al (2017) Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. Chem Commun (Camb) 53:7246–7249CrossRefGoogle Scholar
  35. Erichsen MM, Løvås K, Fougner KJ et al (2009) Normal overall mortality rate in Addison’s disease, but young patients are at risk of premature death. Eur J Endocrinol 160:233–237CrossRefPubMedGoogle Scholar
  36. Esteve C, Tolner EA, Shyti R et al (2016) Mass spectrometry imaging of amino neurotransmitters: a comparison of derivatization methods and application in mouse brain tissue. Metabolomics 12:30CrossRefPubMedPubMedCentralGoogle Scholar
  37. Evron Y, Colton CK, Ludwig B et al (2018) Long-term viability and function of transplanted islets macroencapsulated at high density are achieved by enhanced oxygen supply. Sci Rep 8:6508CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fallo F, Veglio F, Bertello C et al (2006) Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab 91:454–459CrossRefPubMedGoogle Scholar
  39. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254CrossRefPubMedGoogle Scholar
  40. Fessenden M (2016) Metabolomics: small molecules, single cells. Nature 540:153–155CrossRefPubMedGoogle Scholar
  41. Fluck CE, Tajima T, Pandey AV et al (2004) Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley–Bixler syndrome. Nat Genet 36:228–230CrossRefPubMedGoogle Scholar
  42. Gawin M, Wojakowska A, Pietrowska M et al (2018) Proteome profiles of different types of thyroid cancers. Mol Cell Endocrinol 472:68–79CrossRefPubMedGoogle Scholar
  43. Geller DS, Zhang J, Wisgerhof MV et al (2008) A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 93:3117–3123CrossRefPubMedPubMedCentralGoogle Scholar
  44. Godbole A, Lyga S, Lohse MJ et al (2017) Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat Commun 8:443CrossRefPubMedPubMedCentralGoogle Scholar
  45. Griffiths WJ, Shackleton CHL, Sjövall J (2006) Steroid analysis. In: Caprioli R (ed) The encyclopedia of mass spectrometry. Elsevier, Amsterdam, pp 447–473Google Scholar
  46. Hahner S, Allolio B (2009) Therapeutic management of adrenal insufficiency. Best Pract Res Clin Endocrinol Metab 23:167–179CrossRefPubMedGoogle Scholar
  47. Haller F, Moskalev EA, Faucz FR et al (2014) Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer 21:567–577CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  49. Hanslik G, Wallaschofski H, Dietz A et al (2015) Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn’s Registry. Eur J Endocrinol 173:665–675CrossRefPubMedGoogle Scholar
  50. Heitzer E, Haque IS, Roberts CES et al (2018) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. CrossRefGoogle Scholar
  51. Hines JM, Bancos I, Bancos C et al (2017) High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clin Chem 63:1824–1835CrossRefPubMedGoogle Scholar
  52. Hollinshead KER, Munford H, Eales KL et al (2018) Oncogenic IDH1 mutations promote enhanced proline synthesis through PYCR1 to support the maintenance of mitochondrial redox homeostasis. Cell Rep 22(12):3107–3114CrossRefPubMedPubMedCentralGoogle Scholar
  53. Huang KT, Ludy S, Calligaris D et al (2017) Rapid mass spectrometry imaging to assess the biochemical profile of pituitary tissue for potential intraoperative usage. Adv Cancer Res 134:257–282CrossRefPubMedGoogle Scholar
  54. Idkowiak J, Randell T, Dhir V et al (2012) A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency. J Clin Endocrinol Metab 97:E465–E475CrossRefPubMedGoogle Scholar
  55. Imperiale A, Elbayed K, Moussallieh FM et al (2013) Metabolomic profile of the adrenal gland: from physiology to pathological conditions. Endocr Relat Cancer 20:705–716CrossRefPubMedGoogle Scholar
  56. Imperiale A, Moussallieh FM, Roche P et al (2015) Metabolome profiling by HRMAS NMR spectroscopy of pheochromocytomas and paragangliomas detects SDH deficiency: clinical and pathophysiological implications. Neoplasia 17:55–65CrossRefPubMedPubMedCentralGoogle Scholar
  57. Joannou GE (1981) Identification of 15 beta-hydroxylated C21 steroids in the neo-natal period: the role of 3 alpha,15 beta,17 alpha-trihydroxy-5 beta-pregnan-20-one in the perinatal diagnosis of congenital adrenal hyperplasia (CAH) due to a 21-hydroxylase deficiency. J Steroid Biochem 14:901–912CrossRefPubMedGoogle Scholar
  58. Juratli TA, Peitzsch M, Geiger K et al (2013) Accumulation of 2-hydroxyglutarate is not a biomarker for malignant progression in IDH-mutated low-grade gliomas. Neuro Oncol 15:682–690CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kaelin WG Jr (2011) Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb Symp Quant Biol 76:335–345CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kalinina J, Ahn J, Devi NS et al (2016) Selective detection of the d-enantiomer of 2-hydroxyglutarate in the CSF of glioma patients with mutated isocitrate dehydrogenase. Clin Cancer Res 22:6256–6265CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kaya I, Brülls SM, Dunevall J et al (2018) On-tissue chemical derivatization of catecholamines using 4-(N-Methyl)pyridinium boronic acid for ToF-SIMS and LDI-ToF mass spectrometry imaging. Anal Chem. CrossRefPubMedGoogle Scholar
  62. Kazdal D, Longuespée R, Dietz S et al (2018) Digital PCR after MALDI-mass spectrometry imaging to combine proteomic mapping and identification of activating mutations in pulmonary adenocarcinoma. Proteom Clin Appl. CrossRefGoogle Scholar
  63. Kerkhofs TM, Kerstens MN, Kema IP et al (2015) Diagnostic value of urinary steroid profiling in the evaluation of adrenal tumors. Horm Cancer 6:168–175CrossRefPubMedPubMedCentralGoogle Scholar
  64. Klein O, Kanter F, Kulbe H et al (2018) MALDI-imaging for classification of epithelial ovarian cancer histotypes from a tissue microarray using machine learning methods. Proteom Clin Appl. CrossRefGoogle Scholar
  65. Krone N, Hughes BA, Lavery GG et al (2010) Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol 121:496–504CrossRefPubMedPubMedCentralGoogle Scholar
  66. Krone N, Reisch N, Idkowiak J et al (2012) Genotype-phenotype analysis in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. J Clin Endocrinol Metab 97:E257–E267CrossRefPubMedGoogle Scholar
  67. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125CrossRefPubMedGoogle Scholar
  68. Lazova R, Seeley EH, Kutzner H et al (2016) Imaging mass spectrometry assists in the classification of diagnostically challenging atypical Spitzoid neoplasms. J Am Acad Dermatol 75:1176–1186.e4CrossRefPubMedPubMedCentralGoogle Scholar
  69. Leijon H, Kaprio T, Heiskanen A et al (2017) N-Glycomic profiling of pheochromocytomas and paragangliomas separates metastatic and nonmetastatic disease. J Clin Endocrinol Metab 102:3990–4000CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lenders JWM, Williams TA, Reincke M et al (2018) Diagnosis of endocrine disease: 18-oxocortisol and 18-hydroxycortisol: is there clinical utility of these steroids? Eur J Endocrinol 178:R1–R9CrossRefPubMedGoogle Scholar
  71. Lendvai N, Pawlosky R, Bullova P et al (2014) Succinate-to-fumarate ratio as a new metabolic marker to detect the presence of SDHB/D-related paraganglioma: initial experimental and ex vivo findings. Endocrinology 155:27–32CrossRefPubMedGoogle Scholar
  72. Liu C, Zhang L, Liu H et al (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 266:17–26CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lloyd RV, Osamura RY, Kloppel G, Rosai J (2017) WHO classification of tumors of endocrine organs, 4th edn. IARC, LyonGoogle Scholar
  74. Longuespée R, Wefers AK, De Vita E et al (2018) Rapid detection of 2-hydroxyglutarate in frozen sections of IDH mutant tumors by MALDI–TOF massspectrometry. Acta Neuropathol Commun 6(1):21CrossRefPubMedPubMedCentralGoogle Scholar
  75. Løvås K, Loge JH, Husebye ES (2002) Subjective health status in Norwegian patients with Addison’s disease. Clin Endocrinol (Oxf) 56:581–588CrossRefGoogle Scholar
  76. Lussey-Lepoutre C, Hollinshead KE, Ludwig C et al (2015) Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun 6:8784CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lussey-Lepoutre C, Bellucci A, Morin A et al (2016) In vivo detection of succinate by magnetic resonance spectroscopy as a hallmark of SDHx mutations in paraganglioma. Clin Cancer Res 22:1120–1129CrossRefPubMedGoogle Scholar
  78. Ly A, Buck A, Balluff B et al (2016) High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 11:1428–1443CrossRefPubMedGoogle Scholar
  79. Malunowicz EM, Mitkowska Z, Bal K et al (1997) Definitive diagnosis of enzymatic deficiencies of steroidogenesis in at-risk newborns and infants by urinary marker analysis using GC/MS-SIM. Horm Res 48:243–251CrossRefPubMedGoogle Scholar
  80. Markmann S, De BP, Reid J et al (2018) Biology of the adrenal gland cortex obviates effective use of adeno-associated virusvectors to treat hereditary adrenal disorders. Hum Gene Ther 29:403–412CrossRefPubMedGoogle Scholar
  81. Morin A, Letouze E, Gimenez-Roqueplo AP et al (2014) Oncometabolites-driven tumorigenesis: from genetics to targeted therapy. Int J Cancer 135:2237–2248CrossRefPubMedGoogle Scholar
  82. Nieman LK, Biller BM, Findling JW et al (2008) The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 93:1526–1540CrossRefPubMedPubMedCentralGoogle Scholar
  83. Palermo M, Shackleton CH, Mantero F et al (1996) Urinary free cortisone and the assessment of 11 beta-hydroxysteroid dehydrogenase activity in man. Clin Endocrinol (Oxf) 45:605–611CrossRefGoogle Scholar
  84. Papathomas TG, Oudijk L, Persu A et al (2015) SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a multinational study of the european network for the study of adrenal tumors (ENS@T). Mod Pathol 28:807–821CrossRefPubMedGoogle Scholar
  85. Papathomas TG, Giordano TJ, Maher ER, Tischler AS (2019) Adrenal glands tumors: pathology and genetics. In: Boffetta P, Hainaut P (eds) Encyclopedia of cancer, 3rd edn. Elsevier, Academic Press, Amsterdam, pp 18–29Google Scholar
  86. Passarelli MK, Pirkl A, Moellers R et al (2017) The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat Methods 14:1175–1183CrossRefPubMedGoogle Scholar
  87. Patel E (2017) Fresh frozen versus formalin-fixed paraffin embedded for mass spectrometry imaging. Methods Mol Biol 1618:7–14CrossRefPubMedGoogle Scholar
  88. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47CrossRefPubMedPubMedCentralGoogle Scholar
  90. Peng X, Chen Z, Farshidfar F et al (2018) Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep 23:255.e4–269.e4Google Scholar
  91. Perry RJ, Novikova E, Wallace AM et al (2011) Pitfalls in the diagnosis of 5alpha-reductase type 2 deficiency during early infancy. Horm Res Paediatr 75:380–382CrossRefPubMedGoogle Scholar
  92. Pietrowska M, Diehl HC, Mrukwa G et al (2017) Molecular profiles of thyroid cancer subtypes: classification based on features of tissue revealed by mass spectrometry imaging. Biochim Biophys Acta Proteins Proteom 1865:837–845CrossRefPubMedGoogle Scholar
  93. Pinheiro C, Granja S, Longatto-Filho A et al (2015) Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors. Oncotarget 6:44403–44421CrossRefPubMedPubMedCentralGoogle Scholar
  94. Pinheiro C, Granja S, Longatto-Filho A et al (2017) GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior. Oncotarget 8:63835–63845PubMedPubMedCentralGoogle Scholar
  95. Poli G, Sarchielli E, Guasti D et al (2018) Human fetal adrenal cells retain age-related stem- and endocrine-differentiation potential in culture. FASEB J. CrossRefPubMedGoogle Scholar
  96. Pozo OJ, Marcos J, Khymenets O et al (2018) Sulfation pathways: alternate steroid sulfation pathways targeted by LC–MS/MS analysis of disulfates: application to prenatal diagnosis of steroid synthesis disorders. J Mol Endocrinol 2:M1–M12CrossRefGoogle Scholar
  97. Rao JU, Engelke UF, Rodenburg RJ et al (2013) Genotype-specific abnormalities in mitochondrial function associate with distinct profiles of energy metabolism and catecholamine content in pheochromocytoma and paraganglioma. Clin Cancer Res 19:3787–3795CrossRefPubMedPubMedCentralGoogle Scholar
  98. Remacha L, Comino-Mendez I, Richter S et al (2017) Targeted exome sequencing of Krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin Cancer Res 23:6315–6324CrossRefPubMedGoogle Scholar
  99. Richter S, Peitzsch M, Rapizzi E et al (2014) Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J Clin Endocrinol Metab 99:3903–3911CrossRefPubMedPubMedCentralGoogle Scholar
  100. Richter S, Klink B, Nacke B et al (2016) Epigenetic mutation of the succinate dehydrogenase C promoter in a patient with two paragangliomas. J Clin Endocrinol Metab 101:359–363CrossRefGoogle Scholar
  101. Richter S, Gieldon L, Pang Y et al (2018) Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genet Med. CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ricketts CJ, Shuch B, Vocke CD et al (2012) Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 188:2063–2071CrossRefPubMedGoogle Scholar
  103. Ruiz-Babot G, Hadjidemetriou I, King PJ (2015) New directions for the treatment of adrenal insufficiency. Front Endocrinol (Lausanne) 6:70CrossRefGoogle Scholar
  104. Ruiz-Babot G, Balyura M, Hadjidemetriou I et al (2018) Modeling congenital adrenal hyperplasia and testing interventions for adrenal insufficiency using donor-specific reprogrammed cells. Cell Rep 22:1236–1249CrossRefPubMedPubMedCentralGoogle Scholar
  105. Schweitzer S, Kunz M, Kurlbaum M et al (2018) Plasma steroid metabolome profiling for the diagnosis of adrenocortical carcinoma. Eur J Endocrinol. CrossRefPubMedGoogle Scholar
  106. Simard J, Ricketts ML, Gingras S et al (2005) Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev 26:525–582CrossRefPubMedGoogle Scholar
  107. Smith A, Galli M, Piga I et al (2018) Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. J Proteom. CrossRefGoogle Scholar
  108. Soltwisch J, Kettling H, Vens-Cappell S et al (2015) Mass spectrometry imaging with laser-induced postionization. Science 348:211–215CrossRefPubMedGoogle Scholar
  109. Sonino N, Tomba E, Genesia ML et al (2011) Psychological assessment of primary aldosteronism: a controlled study. J Clin Endocrinol Metab 96:E878–E883CrossRefPubMedGoogle Scholar
  110. Sonoyama T, Sone M, Honda K et al (2012) Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells. Endocrinology 153:4336–4345CrossRefPubMedGoogle Scholar
  111. Speiser PW, Arlt W, Auchus RJ et al (2018) Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 103:4043–4088CrossRefPubMedGoogle Scholar
  112. Steurer S, Borkowski C, Odinga S et al (2013) MALDI mass spectrometric imaging based identification of clinically relevant signals in prostatecancer using large-scale tissue microarrays. Int J Cancer 133:920–928CrossRefPubMedGoogle Scholar
  113. Stewart PM, Corrie JE, Shackleton CH et al (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. J Clin Investig 82:340–349CrossRefPubMedGoogle Scholar
  114. Stewart PM, Walker BR, Holder G et al (1995) 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 80:3617–3620PubMedGoogle Scholar
  115. Stoyanovsky DA, Sparvero LJ, Amoscato AA et al (2014) Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. Rapid Commun Mass Spectrom 28:403–412CrossRefPubMedPubMedCentralGoogle Scholar
  116. Sugihara Y, Rivas D, Malm J et al (2018) Endogenous expression mapping of malignant melanoma by mass spectrometry imaging. Clin Transl Med 7:22CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sulkowski PL, Sundaram RK, Oeck S et al (2018) Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet 50:1086–1092CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sun N, Wu Y, Nanba K et al (2018) High resolution tissue mass spectrometry imaging reveals a refined functional anatomy of the human adult adrenal gland. Endocrinology. CrossRefPubMedGoogle Scholar
  119. Sungkaworn T, Jobin ML, Burnecki K et al (2017) Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550:543–547CrossRefPubMedGoogle Scholar
  120. Taylor AE, Keevil B, Huhtaniemi IT (2015) Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur J Endocrinol 173:D1–D12CrossRefPubMedGoogle Scholar
  121. Taylor DR, Ghataore L, Couchman L et al (2017) A 13-steroid serum panel based on LC–MS/MS: use in detection of adrenocortical carcinoma. Clin Chem 63:1836–1846CrossRefPubMedGoogle Scholar
  122. Tevosian SG, Ghayee HK (2018) Pheochromocytoma/paraganglioma: a poster child for cancer metabolism. J Clin Endocrinol Metab 103:1779–1789CrossRefPubMedGoogle Scholar
  123. Tiosano D, Knopf C, Koren I et al (2008) Metabolic evidence for impaired 17alpha-hydroxylase activity in a kindred bearing the E305G mutation for isolate 17,20-lyase activity. Eur J Endocrinol 158:385–392CrossRefPubMedGoogle Scholar
  124. Ulick S, Chu MD (1982) Hypersecretion of a new corticosteroid, 18-hydroxycortisol in two types of adrenocortical hypertension. Clin Exp Hypertens A 4:1771–1777PubMedGoogle Scholar
  125. Ulick S, Wang JZ, Blumenfeld JD et al (1992a) Cortisol inactivation overload: a mechanism of mineralocorticoid hypertension in the ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 74:963–967PubMedGoogle Scholar
  126. Ulick S, Tedde R, Wang JZ (1992b) Defective ring A reduction of cortisol as the major metabolic error in the syndrome of apparent mineralocorticoid excess. J Clin Endocrinol Metab 74:593–599PubMedGoogle Scholar
  127. Urbanek A, Hölzer S, Knop K et al (2016) Multigrid MALDI mass spectrometry imaging (mMALDI MSI). Anal Bioanal Chem 408:3769–3781CrossRefPubMedGoogle Scholar
  128. van Nederveen FH, Gaal J, Favier J et al (2009) An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10:764–771CrossRefPubMedPubMedCentralGoogle Scholar
  129. Velikanova LI, Shafigullina ZR, Lisitsin AA et al (2016) Different types of urinary steroid profiling obtained by high-performance liquid chromatography and gas chromatography-mass spectrometry in patients with adrenocortical carcinoma. Horm Cancer 7:327–335CrossRefPubMedGoogle Scholar
  130. Wang X, Han J, Pan J et al (2014) Comprehensive imaging of porcine adrenal gland lipids by MALDI-FTMS using quercetin as a matrix. Anal Chem 86:638–646CrossRefPubMedGoogle Scholar
  131. Wang YW, Reder NP, Kang S et al (2017) Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches. Nanotheranostics 1:369–388CrossRefPubMedPubMedCentralGoogle Scholar
  132. Williams TA, Peitzsch M, Dietz AS et al (2016) Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension 67:139–145CrossRefPubMedGoogle Scholar
  133. Wu C, Ifa DR, Manicke NE et al (2010) Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst 135:28–32CrossRefPubMedGoogle Scholar
  134. Wu VC, Chueh SJ, Chen L et al (2017a) Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. J Hypertens 35:1698–1708CrossRefPubMedGoogle Scholar
  135. Wu VC, Chang CH, Wang CY et al (2017b) Risk of fracture in primary aldosteronism: a population-based cohort study. J Bone Miner Res 32:743–752CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thomas G. Papathomas
    • 1
    • 2
  • Na Sun
    • 2
  • Vasileios Chortis
    • 1
    • 3
  • Angela E. Taylor
    • 1
    • 3
  • Wiebke Arlt
    • 1
    • 3
  • Susan Richter
    • 4
    • 5
  • Graeme Eisenhofer
    • 4
    • 5
    • 6
  • Gerard Ruiz-Babot
    • 6
    • 7
    • 8
  • Leonardo Guasti
    • 8
  • Axel Karl Walch
    • 2
    Email author
  1. 1.Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
  2. 2.Research Unit Analytical Pathology, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
  3. 3.Centre for Endocrinology, Diabetes and MetabolismBirmingham Health PartnersBirminghamUK
  4. 4.Faculty of Medicine Carl Gustav Carus, School of MedicineTechnische Universität DresdenDresdenGermany
  5. 5.Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  6. 6.Department of Internal Medicine IIITechnische Universität Dresden, University Hospital Carl Gustav CarusDresdenGermany
  7. 7.Division of Endocrinology, Boston Children’s HospitalHarvard Medical SchoolBostonUSA
  8. 8.Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK

Personalised recommendations