Advertisement

Characterization of blood–brain barrier integrity in a B-cell-dependent mouse model of multiple sclerosis

  • Luisa Bell
  • Tobias Koeniger
  • Sabine Tacke
  • Stefanie KuertenEmail author
Original Paper
  • 106 Downloads

Abstract

Recent studies with B-cell-depleting antibodies have demonstrated clinical success in the treatment of multiple sclerosis (MS) patients. While these antibodies efficiently target B cells in the blood, it is unclear how effective they are in the central nervous system (CNS), especially in the context of limited blood–brain barrier (BBB) permeability and the ongoing discussion on the relevance of B-cell aggregate formation in the brains of SP-MS patients. The aim of this study was to evaluate BBB integrity in the context of B-cell-dependent neuroinflammation in a mouse model of MS. C57BL/6 mice were actively immunized with either myelin oligodendrocyte glycoprotein peptide 35-55 to induce T-cell-dependent experimental autoimmune encephalomyelitis (EAE), or with the myelin basic protein–proteolipid protein fusion protein MP4 for additional B-cell dependence. BBB integrity was assessed using Evans Blue or fluorescein isothiocyanate–dextran injection, respectively, in combination with immunofluorescence staining for key components of the BBB. In both EAE models, tracer leakage into the CNS parenchyma was observed indicating BBB leakiness. Yet, intensity and distribution patterns of leakage differed between the two models. There was no difference in the severity of BBB damage comparing acute and chronic MP4-induced EAE, but the formation of B-cell aggregates was associated with local BBB impairment in this model. This study underscores that a leaky BBB is a characteristic feature of EAE, but it also suggests that extent and region specificity of BBB damage differs between individual EAE models that vary in the underlying immunopathology.

Keywords

BBB B cells EAE FITC–dextran MP4 MS 

Abbreviations

ADCC

Antibody-dependent cellular cytotoxicity

ANOVA

Analysis of variances

B6

C57BL/6

BBB

Blood–brain barrier

CDC

Complement-dependent cytotoxicity

CFA

Complete Freund’s adjuvant

CNS

Central nervous system

CSF

Cerebrospinal fluid

DAPI

4',6-diamidino-2-phenylindole

EAE

Experimental autoimmune encephalomyelitis

FITC

Fluorescein isothiocyanate

IFA

Incomplete Freund’s adjuvant

MBP

Myelin basic protein

MOG

Myelin oligodendrocyte glycoprotein

MP4

MBP–PLP fusion protein

MRI

Magnetic resonance imaging

MS

Multiple sclerosis

PBS

Phosphate-buffered saline

PCV

Postcapillary venule

PFA

Paraformaldehyde

PLP

Proteolipid protein

RR-MS

Relapsing–remitting MS

RT

Room temperature

SD

Standard deviation

SP-MS

Secondary progressive MS

Notes

Acknowledgements

We would like to thank Michael Christof for graphical procession of the figures and Brigitte Treffny for technical support.

Author contributions

LB conducted Evans Blue and FITC–dextran experiments, statistical analyses, interpreted the data, and drafted the manuscript. TK supported the experimental layout and scored the mice. LB and SK were responsible for the design of the study. SK immunized and treated the mice, supervised the study, interpreted the data, and drafted the manuscript. ST drafted the manuscript. All authors read and approved the final manuscript.

Funding

This study was funded by a research grant from Hoffman-La Roche.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The study was approved by the Regierung von Unterfranken (file 91/14).

Supplementary material

418_2019_1768_MOESM1_ESM.docx (11 mb)
Supplementary material 1 (DOCX 11228 KB)

References

  1. Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, Bourbonnière L, Larochelle C, Prat A (2015) Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74:14–24CrossRefGoogle Scholar
  2. Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, Comi G, Adèr HJ, Losseff N, Valk J (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069CrossRefGoogle Scholar
  3. Batoulis H, Wunsch M, Birkenheier J, Rottlaender A, Gorboulev V, Kuerten S (2015) Central nervous system infiltrates are characterized by features of ongoing B cell-related immune activity in MP4-induced experimental autoimmune encephalomyelitis. Clin Immunol 158(1):47–58CrossRefGoogle Scholar
  4. Berghoff SA, Düking T, Spieth L, Winchenbach J, Stumpf SK, Gerndt N, Kusch K, Ruhwedel T, Möbius W, Saher G (2017) Blood–brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun 5(1):94CrossRefPubMedCentralGoogle Scholar
  5. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, Hartung HP, Havrdova E, Selmaj KW, Weiner HL, Miller T, Fisher E, Sandbrink R, Lake SL, Margolin DH, Oyuela P, Panzara MA, Compston DA, CARE-MS II Investigators (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380(9856):1829–1839CrossRefGoogle Scholar
  6. Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HB (2014) Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin 4:182–189CrossRefGoogle Scholar
  7. Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72(5):648–672CrossRefGoogle Scholar
  8. Dubey D, Kieseier BC, Hartung HP, Hemmer B, Miller-Little WA, Stuve O (2015) Clinical management of multiple sclerosis and neuromyelitis optica with therapeutic monoclonal antibodies: approved therapies and emerging candidates. Expert Rev Clin Immunol 11(1):93–108CrossRefGoogle Scholar
  9. Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F (2008) B cells and multiple sclerosis. Lancet Neurol 7(9):852–858CrossRefGoogle Scholar
  10. Gold R, Hartung H-P, Toyka KV (2000) Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 6(2):88–91CrossRefGoogle Scholar
  11. Grossman RI, Gonzalez-Scarano F, Atlas SW, Galetta S, Silberberg DH (1986) Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology 161(3):721–725CrossRefGoogle Scholar
  12. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, OPERA I and OPERA II Clinical Investigators (2017) Ocrelizumab vs. interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234CrossRefGoogle Scholar
  13. Helliwell CL, Coles AJ (2009) Monoclonal antibodies in multiple sclerosis treatment: current and future steps. Ther Adv Neurol Disord 2(4):195–203CrossRefPubMedCentralGoogle Scholar
  14. Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, Serafini B, Aloisi F, Roncaroli F, Magliozzi R, Reynolds R (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134(Pt 9):2755–2771CrossRefGoogle Scholar
  15. Kermode A, Thompson A, Tofts P, MacManus D, Kendall B, Kingsley D, Moseley I, Rudge P, McDonald W (1990) Breakdown of the blood–brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis: pathogenetic and clinical implications. Brain 113(Pt 9):1477–1489CrossRefGoogle Scholar
  16. Kern DJ, James BR, Blackwell S, Gassner C, Klein C, Weiner GJ (2013) GA101 induces NK-cell activation and antibody-dependent cellular cytotoxicity more effectively than rituximab when complement is present. Leukemia Lymphoma 54(11):2500–2505CrossRefPubMedCentralGoogle Scholar
  17. Komori M, Lin YC, Cortese I, Blake A, Ohayon J, Cherup J, Maric D, Kosa P, Wu T, Bielekova B (2016) Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol 3(3):166–179CrossRefPubMedCentralGoogle Scholar
  18. Kuerten S, Angelov DN (2008) Comparing the CNS morphology and immunobiology of different EAE models in C57BL/6 mice—a step towards understanding the complexity of multiple sclerosis. Ann Anat 190(1):1–15CrossRefGoogle Scholar
  19. Kuerten S, Lichtenegger FS, Faas S, Angelov DN, Tary-Lehmann M, Lehmann PV (2006) MBP–PLP fusion protein-induced EAE in C57BL/6 mice. J Neuroimmunol 177(1–2):99–111CrossRefGoogle Scholar
  20. Ladewig G, Jestaedt L, Misselwitz B, Solymosi L, Toyka K, Bendszus M, Stoll G (2009) Spatial diversity of blood–brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study. Exp Neurol 220(1):207–211CrossRefGoogle Scholar
  21. Lovato L, Willis SN, Rodig SJ, Caron T, Almendinger SE, Howell OW, Reynolds R, O’Connor KC, Hafler DA (2011) Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 134(Pt 2):534–541CrossRefPubMedCentralGoogle Scholar
  22. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130(Pt 4):1089–1104Google Scholar
  23. McDonald W (1994) The pathological and clinical dynamics of multiple sclerosis J Neuropathol Exp Neurol 53(4):338–343CrossRefGoogle Scholar
  24. McFarland HF, Frank JA, Albert PS, Smith ME, Martin R, Harris JO, Patronas N, Maloni H, McFarlin DE (1992) Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann Neurol 32(6):758–766CrossRefGoogle Scholar
  25. Mellion M, Edwards KR, Hupperts R, Drulović J, Montalban X, Hartung HP, Brochet B, Calabresi PA, Rudick R, Ibrahim A, Zhang Y, Xu L, Cadavid D (2017) Efficacy results from the phase 2b SYNERGY study: treatment of disabling multiple sclerosis with the Anti-LINGO-1 monoclonal antibody opicinumab (S33.004). Neurology 88(16 Supplement):S33.004Google Scholar
  26. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy JM, Pepinsky RB (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8(6):745–751CrossRefGoogle Scholar
  27. Minagar A, Alexander JS (2003) Blood–brain barrier disruption in multiple sclerosis. Mult Scler 9(6):540–549CrossRefGoogle Scholar
  28. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Rammohan KW, Selmaj K, Traboulsee A, Sauter A, Masterman D, Fontoura P, Belachew S, Garren H, Mairon N, Chin P, Wolinsky JS, ORATORIO Clinical Investigators (2017) Ocrelizumab vs. placebo in primary progressive multiple sclerosis. N Engl J Med 376(3):209–220CrossRefGoogle Scholar
  29. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC, Loetscher H, Ghosh A, Freskgard PO (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81(1):49–60CrossRefGoogle Scholar
  30. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood–brain barrier. Nat Med 19(12):1584–1596CrossRefPubMedCentralGoogle Scholar
  31. Rubenstein JL, Combs D, Rosenberg J, Levy A, McDermott M, Damon L, Ignoffo R, Aldape K, Shen A, Lee D, Grillo-Lopez A, Shuman MA (2003) Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood 101(2):466–468CrossRefGoogle Scholar
  32. Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD (2015) Markers for blood–brain barrier integrity: how appropriate is Evans Blue in the twenty-first century and what are the alternatives? Front Neurosci 9:385PubMedCentralGoogle Scholar
  33. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14(2):164–174CrossRefGoogle Scholar
  34. Shen DD, Artru AA, Adkison KK (2004) Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 56(12):1825–1857CrossRefGoogle Scholar
  35. Smith ME, Stone LA, Albert PS, Frank JA, Martin R, Armstrong M, Maloni H, McFarlin DE, McFarland HF (1993) Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33(5):480–489CrossRefGoogle Scholar
  36. Sorensen PS, Lisby S, Grove R, Derosier F, Shackelford S, Havrdova E, Drulovic J, Filippi M (2014) Safety and efficacy of ofatumumab in relapsing–remitting multiple sclerosis: a phase 2 study. Neurology 82(7):573–581CrossRefGoogle Scholar
  37. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747CrossRefGoogle Scholar
  38. Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, Huttner AJ, Laman JD, Nagra RM, Nylander A, Pitt D, Ramanan S, Siddiqui BA, Vigneault F, Kleinstein SH, Hafler DA, O’Connor KC (2014) B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 6(248):248ra107CrossRefPubMedCentralGoogle Scholar
  39. Vos CM, Geurts JJ, Montagne L, van Haastert ES, Bö L, van der Valk P, Barkhof F, de Vries HE (2005) Blood–brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis 20(3):953–960CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anatomy and Cell BiologyUniversity of WürzburgWürzburgGermany
  2. 2.Institute of Anatomy and Cell BiologyFriedrich Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations