Advertisement

Alarin in different human intestinal epithelial cell types

  • Samir Jabari
  • Falk Schrödl
  • Alexandra Kaser-Eichberger
  • Barbara Kofler
  • Axel Brehmer
Short Communication
  • 12 Downloads

Abstract

Alarin (AL), a new member of the galanin family, has been localized in various CNS regions, mainly in rodents. Among other effects, it modulates food intake. Therefore, we analyzed the immunohistochemical distribution pattern of AL in human intestinal epithelia. Cryosections of 12 human bowel samples were immunohistochemically double-stained for AL and α-defensin 5 (αD; first set). Two further sets of sections were quadruple-stained either (second set) for AL, chromogranin (CG), synaptophysin (SY), and somatostatin (SO) or (third set) for AL, CG, Peptide Y (PY), and 5-hydroxytryptamine (5-HT). Slides were digitized and quantitative analysis of co-localization rates was undertaken. Small bowel: most of AL-positive cells (56%) were αD-positive Paneth cells located within the base of the crypts (first set). In the second set, about 27% of AL-labeled cells were co-reactive for SY and CG, likely representing entero-endocrine cells. In the third set, the largest subpopulation of AL-positive cells was not co-reactive for other markers applied (89%); most of them were likely Paneth cells. Large bowel: co-localization of AL with αD was not detected (first set). In the second set, AL was frequently co-localized with the other three markers applied (68%). In the third set, AL was frequently co-localized with 5-HT and CG (31%) as well as with PY and 5-HT (22%). Due to its presence in various enteroendocrine as well as Paneth cells, AL may be involved in different physiological and pathological processes.

Keywords

Alarin Enteroendocrine cells Epithelial cells Galanin family Paneth cells 

Notes

References

  1. Adolph TE, Mayr L, Grabherr F, Tilg H (2018) Paneth cells and their antimicrobials in intestinal immunity. Curr Pharm Design 24(10):1121–1129.  https://doi.org/10.2174/1381612824666180327161947 CrossRefGoogle Scholar
  2. Baganz NL, Blakely RD (2013) A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 4(1):48–63.  https://doi.org/10.1021/cn300186b CrossRefPubMedGoogle Scholar
  3. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418(6898):650–654.  https://doi.org/10.1038/nature02666 CrossRefPubMedGoogle Scholar
  4. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349(10):941–948.  https://doi.org/10.1056/NEJMoa030204 CrossRefPubMedGoogle Scholar
  5. Bauer JW, Lang R, Jakab M, Kofler B (2008) Galanin family of peptides in skin function. Cell Mol Life Sci 65(12):1820–1825.  https://doi.org/10.1007/s00018-008-8156-5 CrossRefPubMedGoogle Scholar
  6. Boughton CK, Patterson M, Bewick GA, Tadross JA, Gardiner JV, Beale KE, Chaudery F, Hunter G, Busbridge M, Leavy EM, Ghatei MA, Bloom SR, Murphy KG (2010) Alarin stimulates food intake and gonadotrophin release in male rats. Br J Pharmacol 161(3):601–613.  https://doi.org/10.1111/j.1476-5381.2010.00893.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chandrasekharan B, Nezami BG, Srinivasan S (2013) Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol 304(11):G949–G957.  https://doi.org/10.1152/ajpgi.00493.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1):13–23.  https://doi.org/10.1172/JCI30227 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eberhard N, Mayer C, Santic R, Navio RP, Wagner A, Bauer HC, Sperk G, Boehm U, Kofler B (2012) Distribution of alarin immunoreactivity in the mouse brain. J Mol Neurosci 46(1):18–32.  https://doi.org/10.1007/s12031-011-9546-y CrossRefPubMedGoogle Scholar
  10. Eberhard N, Weis S, Reitsamer H, Kofler B (2013) Expression of alarin in ependymoma and choroid plexus tumors. J Neurooncol 114(2):165–171.  https://doi.org/10.1007/s11060-013-1177-4 CrossRefPubMedGoogle Scholar
  11. Fothergill LJ, Furness JB (2018) Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol 150:693–702.  https://doi.org/10.1007/s00418-018-1746-x CrossRefPubMedGoogle Scholar
  12. Fraley GS, Leathley E, Lundy N, Chheng E, King I, Kofler B (2012) Effects of alarin on food intake, body weight and luteinizing hormone secretion in male mice. Neuropeptides 46(2):99–104.  https://doi.org/10.1016/j.npep.2011.12.003 CrossRefPubMedGoogle Scholar
  13. Gassler N (2017) Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol 8(4):150–160.  https://doi.org/10.4291/wjgp.v8.i4.150 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gribble FM, Reimann F (2016) Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium. Annu Rev Physiol 78:277–299.  https://doi.org/10.1146/annurev-physiol-021115-105439 CrossRefPubMedGoogle Scholar
  15. Gunawardene AR, Corfe BM, Staton CA (2011) Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 92(4):219–231.  https://doi.org/10.1111/j.1365-2613.2011.00767.x CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kaji I, Kaunitz JD (2018) Chemosensing in the colon. In: Hamid M, Said FKG, Jonathan D. Kaunitz JL, Merchant JD, Wood (eds) Physiology of the gastrointestinal tract, vol 1, 6th edn. John Fedor, UK, pp 671–682CrossRefGoogle Scholar
  17. Khan WI, Ghia JE (2010) Gut hormones: emerging role in immune activation and inflammation. Clin Exp Immunol 161:19–27.  https://doi.org/10.1111/j.1365-2249.2010.04150.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Koch C, da Silveira ABM, de Oliveira EC, Quint K, Neuhuber W, Brehmer A, Jabari S (2017) Epithelial cell types and their proposed roles in maintaining the mucosal barrier in human chagasic-megacolonic mucosa. Histochem Cell Biol 148(2):207–216.  https://doi.org/10.1007/s00418-017-1563-7 CrossRefPubMedGoogle Scholar
  19. Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B (2016) Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 28(5):620–630.  https://doi.org/10.1111/nmo.12754 CrossRefPubMedGoogle Scholar
  20. Lewin K (1969) The Paneth cell in disease. Gut 10(10):804–811CrossRefGoogle Scholar
  21. Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10(8):473–486.  https://doi.org/10.1038/nrgastro.2013.105 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Miko A, Balla P, Tenk J, Balasko M, Soos S, Szekely M, Brunner S, Kofler B, Petervari E (2014) Thermoregulatory effect of alarin, a new member of the galanin peptide family. Temperature (Austin) 1(1):51–56.  https://doi.org/10.4161/temp.29790 CrossRefPubMedCentralGoogle Scholar
  23. Miko A, Furedi N, Tenk J, Rostas I, Soos S, Solymar M, Szekely M, Balasko M, Brunner SM, Kofler B, Petervari E (2017) Acute central effects of alarin on the regulation on energy homeostasis. Neuropeptides 64:117–122.  https://doi.org/10.1016/j.npep.2016.09.001 CrossRefPubMedGoogle Scholar
  24. Morgan JS, Groszmann RJ (1989) Somatostatin in portal hypertension. Dig Dis Sci 34(3 Suppl):40S–47SCrossRefGoogle Scholar
  25. Penman E, Wass JA, Butler MG, Penny ES, Price J, Wu P, Rees LH (1983) Distribution and characterisation of immunoreactive somatostatin in human gastrointestinal tract. Regul Pept 7(1):53–65CrossRefGoogle Scholar
  26. Porter EM, Liu L, Oren A, Anton PA, Ganz T (1997) Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun 65(6):2389–2395PubMedPubMedCentralGoogle Scholar
  27. Rosskopf D, Schurks M, Manthey I, Joisten M, Busch S, Siffert W (2003) Signal transduction of somatostatin in human B lymphoblasts. Am J Physiol Cell Physiol 284(1):C179–C190.  https://doi.org/10.1152/ajpcell.00160.2001 CrossRefPubMedGoogle Scholar
  28. Rubio CA (2012) Paneth cells and goblet cells express the neuroendocrine peptide synaptophysin. I. Normal duodenal mucosa. In Vivo 26(1):135–138PubMedGoogle Scholar
  29. Santic R, Fenninger K, Graf K, Schneider R, Hauser-Kronberger C, Schilling FH, Kogner P, Ratschek M, Jones N, Sperl W, Kofler B (2006) Gangliocytes in neuroblastic tumors express alarin, a novel peptide derived by differential splicing of the galanin-like peptide gene. J Mol Neurosci 29(2):145–152.  https://doi.org/10.1385/JMN:29:2:145 CrossRefPubMedGoogle Scholar
  30. Santic R, Schmidhuber SM, Lang R, Rauch I, Voglas E, Eberhard N, Bauer JW, Brain SD, Kofler B (2007) Alarin is a vasoactive peptide. Proc Natl Acad Sci USA 104(24):10217–10222.  https://doi.org/10.1073/pnas.0608585104 CrossRefPubMedGoogle Scholar
  31. Schrödl F, Trost A, Strohmaier C, Bogner B, Runge C, Kaser-Eichberger A, Eberhard N, Santic R, Kofler B, Reitsamer HA (2013) Distribution of the regulatory peptide alarin in the eye of various species. Exp Eye Res 106:74–81.  https://doi.org/10.1016/j.exer.2012.11.009 CrossRefPubMedGoogle Scholar
  32. Schrödl F, Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Krefft K, Kofler B, Brandtner H, Reitsamer HA (2015) Alarin in cranial autonomic ganglia of human and rat. Exp Eye Res 131:63–68.  https://doi.org/10.1016/j.exer.2014.12.007 CrossRefPubMedGoogle Scholar
  33. Sheikh SP (1991) Neuropeptide Y and peptide YY: major modulators of gastrointestinal blood flow and function. Am J Physiol 261(5 Pt 1):G701–G715.  https://doi.org/10.1152/ajpgi.1991.261.5.G701 CrossRefPubMedGoogle Scholar
  34. Sjolund K, Sanden G, Hakanson R, Sundler F (1983) Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85(5):1120–1130PubMedGoogle Scholar
  35. Spiller R (2008) Serotonin and GI clinical disorders. Neuropharmacology 55(6):1072–1080.  https://doi.org/10.1016/j.neuropharm.2008.07.016 CrossRefPubMedGoogle Scholar
  36. ten Bokum AM, Hofland LJ, van Hagen PM (2000) Somatostatin and somatostatin receptors in the immune system: a review. Eur Cytokine Netw 11(2):161–176PubMedGoogle Scholar
  37. Vanner S, Macnaughton WK (2004) Submucosal secretomotor and vasodilator reflexes. Neurogastroenterol Motil 16(Suppl 1):39–43.  https://doi.org/10.1111/j.1743-3150.2004.00473.x CrossRefPubMedGoogle Scholar
  38. Varndell IM, Lloyd RV, Wilson BS, Polak JM (1985) Ultrastructural localization of chromogranin: a potential marker for the electron microscopical recognition of endocrine cell secretory granules. Histochem J 17(9):981–992CrossRefGoogle Scholar
  39. Wada A, Wong PF, Hojo H, Hasegawa M, Ichinose A, Llanes R, Kubo Y, Senba M, Ichinose Y (2013) Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity. Biochem Biophys Res Comm 434(2):223–227.  https://doi.org/10.1016/j.bbrc.2013.03.045 CrossRefPubMedGoogle Scholar
  40. Wang M, Chen Q, Li M, Zhou W, Ma T, Wang Y, Gu S (2014) Alarin-induced antidepressant-like effects and their relationship with hypothalamus-pituitary-adrenal axis activity and brain derived neurotrophic factor levels in mice. Peptides 56:163–172.  https://doi.org/10.1016/j.peptides.2014.04.009 CrossRefPubMedGoogle Scholar
  41. Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83(10):3500–3504CrossRefGoogle Scholar
  42. Worthington JJ (2015) The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans 43(4):727–733.  https://doi.org/10.1042/BST20150090 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhuang F, Li M, Gao X, Wang Y, Wang D, Ma X, Ma T, Gu S (2016) The antidepressant-like effect of alarin is related to TrkB-mTOR signaling and synaptic plasticity. Behav Brain Res 313:158–171.  https://doi.org/10.1016/j.bbr.2016.06.057 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of NeuropathologyFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Department of Ophthalmology/Optometry, Research Program Experimental OphthalmologyParacelsus Medical UniversitySalzburgAustria
  3. 3.Department of AnatomyParacelsus Medical UniversitySalzburgAustria
  4. 4.Research Program for Receptor Biochemistry and Tumor Metabolism, Department of PediatricsParacelsus Medical UniversitySalzburgAustria
  5. 5.Institute of Anatomy and Cell BiologyFriedrich-Alexander University Erlangen-NürnbergErlangenGermany

Personalised recommendations