Histochemistry and Cell Biology

, Volume 150, Issue 5, pp 489–508 | Cite as

Gephyrin: a key regulatory protein of inhibitory synapses and beyond

  • Femke L. Groeneweg
  • Christa Trattnig
  • Jochen Kuhse
  • Ralph A. Nawrotzki
  • Joachim KirschEmail author


Scaffolding proteins underlying postsynaptic membrane specializations are important structural and functional components of both excitatory and inhibitory synapses. At inhibitory synapses, gephyrin was identified as anchoring protein. Gephyrin self-assembles into a complex flat submembranous lattice that slows the lateral mobility of glycine and GABAA receptors, thus allowing for their clustering at postsynaptic sites. The structure and stability of the gephyrin lattice is dynamically regulated by posttranslational modifications and interactions with binding partners. As gephyrin is the core scaffolding protein for virtually all inhibitory synapses, any changes in the structure or stability of its lattice can profoundly change the packing density of inhibitory receptors and, therefore, alter inhibitory drive. Intriguingly, gephyrin plays a completely independent role in non-neuronal cells, where it facilitates two steps in the biosynthesis of the molybdenum cofactor. In this review, we provide an overview of the role of gephyrin at inhibitory synapses and beyond. We discuss its dynamic regulation, the nanoscale architecture of its synaptic lattice, and the implications of gephyrin dysfunction for neuropathologic conditions, such as Alzheimer’s disease and epilepsy.


Gephyrin Collybistin GABA Glycine Epilepsy Alzheimer 


Compliance with ethical standards

Conflict of interest

None declared.


  1. Ackermann M, Matus A (2003) Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6:1194–1200PubMedGoogle Scholar
  2. Agarwal S, Tannenberg RK, Dodd PR (2008) Reduced expression of the inhibitory synapse scaffolding protein gephyrin in Alzheimer’s disease. J Alzheimers Dis 14:313–321PubMedGoogle Scholar
  3. Alber M et al (2017) ARHGEF9 disease: Phenotype clarification and genotype-phenotype correlation. Neurol Genet 3:e148PubMedPubMedCentralGoogle Scholar
  4. Allison DW, Chervin AS, Gelfand VI, Craig AM (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 20:4545–4554PubMedGoogle Scholar
  5. Alvarez FJ (2017) Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 129:50–65PubMedGoogle Scholar
  6. Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509Google Scholar
  7. Balan S et al (2017) Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia. Schizophr Res 185:33–40PubMedGoogle Scholar
  8. Battaglia S, Renner M, Russeau M, Come E, Tyagarajan SK, Levi S (2018) Activity-dependent inhibitory synapse scaling is determined by gephyrin phosphorylation and subsequent regulation of GABAA receptor diffusion. eNeuro 5:ENEURO.0203-0217.2017PubMedPubMedCentralGoogle Scholar
  9. Bausen M, Fuhrmann JC, Betz H, O’Sullivan GA (2006) The state of the actin cytoskeleton determines its association with gephyrin: role of ena/VASP family members. Mol Cell Neurosci 31:376–386PubMedGoogle Scholar
  10. Bausen M, Weltzien F, Betz H, O’Sullivan GA (2010) Regulation of postsynaptic gephyrin cluster size by protein phosphatase 1. Mol Cell Neurosci 44:201–209PubMedGoogle Scholar
  11. Becker M, Kuhse J, Kirsch J (2013) Effects of two elongation factor 1A isoforms on the formation of gephyrin clusters at inhibitory synapses in hippocampal neurons. Histochem Cell Biol 140:603–609PubMedGoogle Scholar
  12. Bemben MA, Shipman SL, Nicoll RA, Roche KW (2015) The cellular and molecular landscape of neuroligins. Trends Neurosci 38:496–505PubMedGoogle Scholar
  13. Brandon NJ et al (2000) GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem 275:38856–38862PubMedGoogle Scholar
  14. Brunig I, Suter A, Knuesel I, Luscher B, Fritschy JM (2002) GABAergic terminals are required for postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J Neurosci 22:4805–4813PubMedGoogle Scholar
  15. Burzomato V, Groot-Kormelink PJ, Sivilotti LG, Beato M (2003) Stoichiometry of recombinant heteromeric glycine receptors revealed by a pore-lining region point mutation. Recept Channels 9:353–361PubMedGoogle Scholar
  16. Chanda S, Aoto J, Lee SJ, Wernig M, Sudhof TC (2016) Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking. Mol Psychiatry 21:169–177PubMedGoogle Scholar
  17. Charrier C, Ehrensperger MV, Dahan M, Levi S, Triller A (2006) Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J Neurosci 26:8502–8511PubMedGoogle Scholar
  18. Chen J, Yu S, Fu Y, Li X (2014) Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 8:276PubMedPubMedCentralGoogle Scholar
  19. Chiou TT et al (2011) Differential regulation of the postsynaptic clustering of gamma-aminobutyric acid type A (GABAA) receptors by collybistin isoforms. J Biol Chem 286:22456–22468PubMedPubMedCentralGoogle Scholar
  20. Chua HC, Chebib M (2017) GABAA receptors and the diversity in their structure and pharmacology. Adv Pharmacol 79:1–34PubMedGoogle Scholar
  21. Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17:43–52PubMedPubMedCentralGoogle Scholar
  22. Deidda G, Bozarth IF, Cancedda L (2014) Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 8:119PubMedPubMedCentralGoogle Scholar
  23. Dejanovic B, Schwarz G (2014) Neuronal nitric oxide synthase-dependent S-nitrosylation of gephyrin regulates gephyrin clustering at GABAergic synapses. J Neurosci 34:7763–7768PubMedGoogle Scholar
  24. Dejanovic B et al (2014a) Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy. Neurobiol Dis 67:88–96Google Scholar
  25. Dejanovic B et al (2014b) Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol 12:e1001908PubMedPubMedCentralGoogle Scholar
  26. Dejanovic B et al (2015) Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol Med 7:1580–1594PubMedPubMedCentralGoogle Scholar
  27. del Pino I, Paarmann I, Karas M, Kilimann MW, Betz H (2011) The trafficking proteins Vacuolar Protein Sorting 35 and Neurobeachin interact with the glycine receptor beta-subunit. Biochem Biophys Res Commun 412:435–440PubMedGoogle Scholar
  28. Du Z et al (2016) Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington’s disease. Neurosci 329:363–379Google Scholar
  29. Durisic N, Godin AG, Wever CM, Heyes CD, Lakadamyali M, Dent JA (2012) Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neurosci 32:12915–12920PubMedPubMedCentralGoogle Scholar
  30. El-Husseini Ael D et al (2002) Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108:849–863Google Scholar
  31. Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1:563–571PubMedGoogle Scholar
  32. Fang M et al (2011) Downregulation of gephyrin in temporal lobe epilepsy neurons in humans and a rat model. Synapse 65:1006–1014PubMedGoogle Scholar
  33. Fekete CD et al (2017) In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex. J Comp Neurol 525:1291–1311PubMedGoogle Scholar
  34. Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, Sanes JR (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324PubMedGoogle Scholar
  35. Fischer F, Kneussel M, Tintrup H, Haverkamp S, Rauen T, Betz H, Wassle H (2000) Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J Comp Neurol 427:634–648PubMedGoogle Scholar
  36. Flores CE, Nikonenko I, Mendez P, Fritschy JM, Tyagarajan SK, Muller D (2015) Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation. Proc Natl Acad Sci U S A 112:E65–E72PubMedGoogle Scholar
  37. Förstera B et al (2010) Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 133:3778–3794PubMedGoogle Scholar
  38. Fritschy JM, Panzanelli P (2014) GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 39:1845–1865PubMedGoogle Scholar
  39. Fritschy JM, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69:2485–2499PubMedGoogle Scholar
  40. Fuhrmann JC et al (2002) Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes. J Neurosci 22:5393–5402PubMedGoogle Scholar
  41. Fukata Y, Fukata M (2017) Epilepsy and synaptic proteins. Curr Opin Neurobiol 45:1–8PubMedGoogle Scholar
  42. Ghosh H et al (2016) Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun 7:13365PubMedPubMedCentralGoogle Scholar
  43. Giesemann T et al (2003) Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J Neurosci 23:8330–8339PubMedGoogle Scholar
  44. Gonzalez MI (2013) The possible role of GABAA receptors and gephyrin in epileptogenesis. Front Cell Neurosci 7:113PubMedPubMedCentralGoogle Scholar
  45. Gonzalez MI, Cruz Del Angel Y, Brooks-Kayal A (2013) Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia 54:616–624PubMedPubMedCentralGoogle Scholar
  46. Grenningloh G et al (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328:215–220PubMedGoogle Scholar
  47. Grenningloh G, Pribilla I, Prior P, Multhaup G, Beyreuther K, Taleb O, Betz H (1990a) Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor. Neuron 4:963–970PubMedGoogle Scholar
  48. Grenningloh G et al (1990b) Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. Embo j j:771–776PubMedPubMedCentralGoogle Scholar
  49. Grosskreutz Y, Hermann A, Kins S, Fuhrmann JC, Betz H, Kneussel M (2001) Identification of a gephyrin-binding motif in the GDP/GTP exchange factor collybistin. Biol Chem 382:1455–1462PubMedGoogle Scholar
  50. Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45:727–739PubMedGoogle Scholar
  51. Grünewald N et al (2018) Sequences flanking the gephyrin-binding site of glyrbeta tune receptor stabilization at synapses. eNeuro 5:ENEURO.0042-0017.2018Google Scholar
  52. Guan JS et al (2011) Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway. PLoS One 6:e25735PubMedPubMedCentralGoogle Scholar
  53. Hales CM et al (2013) Abnormal gephyrin immunoreactivity associated with Alzheimer disease pathologic changes. J Neuropathol Exp Neurol 72:1009–1015PubMedPubMedCentralGoogle Scholar
  54. Hammer M et al (2015) Perturbed hippocampal synaptic inhibition and gamma-oscillations in a neuroligin-4 knockout mouse model of autism. Cell Rep 13:516–523PubMedPubMedCentralGoogle Scholar
  55. Hanus C, Ehrensperger MV, Triller A (2006) Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 26:4586–4595PubMedGoogle Scholar
  56. Harvey K et al (2004) The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 24:5816–5826PubMedGoogle Scholar
  57. Herweg J, Schwarz G (2012) Splice-specific glycine receptor binding, folding, and phosphorylation of the scaffolding protein gephyrin. J Biol Chem 287:12645–12656PubMedPubMedCentralGoogle Scholar
  58. Hoon M et al (2011) Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A 108:3053–3058PubMedPubMedCentralGoogle Scholar
  59. Hörtnagl H, Tasan RO, Wieselthaler A, Kirchmair E, Sieghart W, Sperk G (2013) Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neurosci 236:345–372Google Scholar
  60. Jackson J, Chugh D, Nilsson P, Wood J, Carlstrom K, Lindvall O, Ekdahl CT (2012) Altered synaptic properties during integration of adult-born hippocampal neurons following a seizure insult. PLoS One 7:e35557PubMedPubMedCentralGoogle Scholar
  61. Jamain S et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29PubMedPubMedCentralGoogle Scholar
  62. Jedlicka P, Papadopoulos T, Deller T, Betz H, Schwarzacher SW (2009) Increased network excitability and impaired induction of long-term potentiation in the dentate gyrus of collybistin-deficient mice in vivo. Mol Cell Neurosci 41:94–100PubMedGoogle Scholar
  63. Jovanovic JN, Thomas P, Kittler JT, Smart TG, Moss SJ (2004) Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J Neurosci 24:522–530PubMedGoogle Scholar
  64. Kalbouneh H, Schlicksupp A, Kirsch J, Kuhse J (2014) Cyclin-dependent kinase 5 is involved in the phosphorylation of gephyrin and clustering of GABAA receptors at inhibitory synapses of hippocampal neurons. PLoS One 9:e104256PubMedPubMedCentralGoogle Scholar
  65. Kalscheuer VM et al (2009) A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat 30:61–68PubMedPubMedCentralGoogle Scholar
  66. Kim EY, Schrader N, Smolinsky B, Bedet C, Vannier C, Schwarz G, Schindelin H (2006) Deciphering the structural framework of glycine receptor anchoring by gephyrin. Embo j 25:1385–1395PubMedPubMedCentralGoogle Scholar
  67. Kins S, Betz H, Kirsch J (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 3:22–29PubMedGoogle Scholar
  68. Kirsch J, Betz H (1993) Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Res 621:301–310PubMedGoogle Scholar
  69. Kirsch J, Betz H (1995) The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci 15:4148–4156PubMedGoogle Scholar
  70. Kirsch J, Langosch D, Prior P, Littauer UZ, Schmitt B, Betz H (1991) The 93-kDa glycine receptor-associated protein binds to tubulin. J Biol Chem 266:22242–22245PubMedGoogle Scholar
  71. Kirsch J, Wolters I, Triller A, Betz H (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366:745–748PubMedGoogle Scholar
  72. Kirsch J, Kuhse J, Betz H (1995) Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol Cell Neurosci 6:450–461PubMedGoogle Scholar
  73. Kiss E, Gorgas K, Schlicksupp A, Gross D, Kins S, Kirsch J, Kuhse J (2016) Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model. Am J Pathol 186:2279–2291PubMedGoogle Scholar
  74. Kittler JT, Arancibia-Carcamo IL, Moss SJ (2004a) Association of GRIP1 with a GABA(A) receptor associated protein suggests a role for GRIP1 at inhibitory synapses. Biochem Pharmacol 68:1649–1654PubMedGoogle Scholar
  75. Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, Moss SJ (2004b) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A 101:12736–12741PubMedPubMedCentralGoogle Scholar
  76. Kittler JT et al (2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. Proc Natl Acad Sci U S A 102:14871–14876PubMedPubMedCentralGoogle Scholar
  77. Klein KM et al (2017) The phenotypic spectrum of ARHGEF9 includes intellectual disability, focal epilepsy and febrile seizures. J Neurol 264:1421–1425PubMedGoogle Scholar
  78. Kneussel M, Betz H (2000a) Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci 23:429–435PubMedGoogle Scholar
  79. Kneussel M, Betz H (2000b) Receptors, gephyrin and gephyrin-associated proteins: novel insights into the assembly of inhibitory postsynaptic membrane specializations. J Physiol 525 Pt 1:1–9Google Scholar
  80. Kneussel M, Haverkamp S, Fuhrmann JC, Wang H, Wassle H, Olsen RW, Betz H (2000) The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc Natl Acad Sci U S A 97:8594–8599PubMedPubMedCentralGoogle Scholar
  81. Kneussel M, Brandstatter JH, Gasnier B, Feng G, Sanes JR, Betz H (2001) Gephyrin-independent clustering of postsynaptic GABA(A) receptor subtypes. Mol Cell Neurosci 17:973–982PubMedGoogle Scholar
  82. Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM (1999) Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11:4457–4462PubMedGoogle Scholar
  83. Knuesel I, Zuellig RA, Schaub MC, Fritschy JM (2001) Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy. Eur J Neurosci 13:1113–1124PubMedGoogle Scholar
  84. Kowalczyk S, Winkelmann A, Smolinsky B, Forstera B, Neundorf I, Schwarz G, Meier JC (2013) Direct binding of GABAA receptor beta2 and beta3 subunits to gephyrin. Eur J Neurosci 37:544–554PubMedGoogle Scholar
  85. Krucker T, Siggins GR, Halpain S (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci U S A 97:6856–6861PubMedPubMedCentralGoogle Scholar
  86. Kuhse J, Schmieden V, Betz H (1990) Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. J Biol Chem 265:22317–22320PubMedGoogle Scholar
  87. Kuhse J, Laube B, Magalei D, Betz H (1993) Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 11:1049–1056PubMedGoogle Scholar
  88. Kuhse J, Kalbouneh H, Schlicksupp A, Mukusch S, Nawrotzki R, Kirsch J (2012) Phosphorylation of gephyrin in hippocampal neurons by cyclin-dependent kinase CDK5 at Ser-270 is dependent on collybistin. J Biol Chem 287:30952–30966PubMedPubMedCentralGoogle Scholar
  89. Landini M et al (2016) Association analysis of noncoding variants in neuroligins 3 and 4X genes with autism spectrum disorder in an italian cohort. Int J Mol Sci 17:E1765PubMedGoogle Scholar
  90. Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci U S A 85:7394–7398PubMedPubMedCentralGoogle Scholar
  91. Laurie DJ, Seeburg PH, Wisden W (1992a) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 12:1063–1076PubMedGoogle Scholar
  92. Laurie DJ, Wisden W, Seeburg PH (1992b) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172PubMedGoogle Scholar
  93. Lehner M et al (2010) Differences in the density of GABA-A receptor alpha-2 subunits and gephyrin in brain structures of rats selected for low and high anxiety in basal and fear-stimulated conditions, in a model of contextual fear conditioning. Neurobiol Learn Mem 94:499–508PubMedGoogle Scholar
  94. Leil TA, Chen ZW, Chang CS, Olsen RW (2004) GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 24:11429–11438PubMedGoogle Scholar
  95. Lemke JR et al (2012) Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53:1387–1398PubMedGoogle Scholar
  96. Lesca G et al (2011) De novo Xq11.11 microdeletion including ARHGEF9 in a boy with mental retardation, epilepsy, macrosomia, and dysmorphic features. Am J Med Genet A 155a:1706–1711PubMedGoogle Scholar
  97. Levi S, Logan SM, Tovar KR, Craig AM (2004) Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J Neurosci 24:207–217PubMedGoogle Scholar
  98. Li J et al (2017) Artemisinins Target GABAA Receptor Signaling and Impair alpha Cell Identity. Cell 168:86–100.e115PubMedPubMedCentralGoogle Scholar
  99. Liang J, Lopez-Valdes HE, Martinez-Coria H, Lindemeyer AK, Shen Y, Shao XM, Olsen RW (2014) Dihydromyricetin ameliorates behavioral deficits and reverses neuropathology of transgenic mouse models of Alzheimer’s disease. Neurochem Res 39:1171–1181PubMedGoogle Scholar
  100. Limon A, Reyes-Ruiz JM, Miledi R (2012) Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A 109:10071–10076PubMedPubMedCentralGoogle Scholar
  101. Lionel AC et al (2013) Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet 22:2055–2066PubMedGoogle Scholar
  102. Lucke-Wold BP et al (2015) Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure. Seizure 33:13–23PubMedGoogle Scholar
  103. Lynch JW (2009) Native glycine receptor subtypes and their physiological roles. Neuropharmacol 56:303–309Google Scholar
  104. Maas C, Tagnaouti N, Loebrich S, Behrend B, Lappe-Siefke C, Kneussel M (2006) Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. J Cell Biol 172:441–451PubMedPubMedCentralGoogle Scholar
  105. Maas C et al (2009) Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci U S A 106:8731–8736PubMedPubMedCentralGoogle Scholar
  106. Machado P et al (2011) Heat shock cognate protein 70 regulates gephyrin clustering. J Neurosci 31:3–14PubMedGoogle Scholar
  107. Machado CO, Griesi-Oliveira K, Rosenberg C, Kok F, Martins S, Passos-Bueno MR, Sertie AL (2016) Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet 24:59–65PubMedGoogle Scholar
  108. Mammoto A et al (1998) Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun 243:86–89PubMedGoogle Scholar
  109. Marco EJ et al (2008) ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. J Med Genet 45:100–105PubMedGoogle Scholar
  110. Maric HM, Mukherjee J, Tretter V, Moss SJ, Schindelin H (2011) Gephyrin-mediated gamma-aminobutyric acid type A and glycine receptor clustering relies on a common binding site. J Biol Chem 286:42105–42114PubMedPubMedCentralGoogle Scholar
  111. Maric HM, Kasaragod VB, Hausrat TJ, Kneussel M, Tretter V, Stromgaard K, Schindelin H (2014) Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin. Nat Commun 5:5767PubMedGoogle Scholar
  112. Marsden KC, Beattie JB, Friedenthal J, Carroll RC (2007) NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABA(A) receptors. J Neurosci 27:14326–14337PubMedGoogle Scholar
  113. Matus A, Brinkhaus H, Wagner U (2000) Actin dynamics in dendritic spines: a form of regulated plasticity at excitatory synapses. Hippocampus 10:555–560PubMedGoogle Scholar
  114. Matzenbach B, Maulet Y, Sefton L, Courtier B, Avner P, Guenet JL, Betz H (1994) Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant. J Biol Chem 269:2607–2612PubMedGoogle Scholar
  115. McDonald BJ, Moss SJ (1997) Conserved phosphorylation of the intracellular domains of GABA(A) receptor beta2 and beta3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacol 36:1377–1385Google Scholar
  116. Meyer G, Kirsch J, Betz H, Langosch D (1995) Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15:563–572PubMedGoogle Scholar
  117. Mukherjee J et al (2011) The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor alpha1 subunit to gephyrin. J Neurosci 31:14677–14687PubMedPubMedCentralGoogle Scholar
  118. Mushtaq G, Greig NH, Anwar F, Al-Abbasi FA, Zamzami MA, Al-Talhi HA, Kamal MA (2016) Neuroprotective Mechanisms Mediated by CDK5 Inhibition. Curr Pharm Des 22:527–534PubMedPubMedCentralGoogle Scholar
  119. Navarro-Lerida I, Martinez Moreno M, Roncal F, Gavilanes F, Albar JP, Rodriguez-Crespo I (2004) Proteomic identification of brain proteins that interact with dynein light chain LC8. Proteomics 4:339–346PubMedGoogle Scholar
  120. Nawrotzki R, Islinger M, Vogel I, Volkl A, Kirsch J (2012) Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochem Cell Biol 137:471–482PubMedGoogle Scholar
  121. O’Sullivan GA et al (2016) Forebrain-specific loss of synaptic GABAA receptors results in altered neuronal excitability and synaptic plasticity in mice. Mol Cell Neurosci 72:101–113PubMedGoogle Scholar
  122. Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA 3rd, Soderling SH (2011) SH3 domain-based phototrapping in living cells reveals rho family GAP signaling complexes. Sci Signal 4:rs13PubMedPubMedCentralGoogle Scholar
  123. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112PubMedGoogle Scholar
  124. Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacol 56:141–148Google Scholar
  125. Panzanelli P et al (2011) Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J Physiol 589:4959–4980PubMedPubMedCentralGoogle Scholar
  126. Panzanelli P, Fruh S, Fritschy JM (2017) Differential role of GABAA receptors and neuroligin 2 for perisomatic GABAergic synapse formation in the hippocampus. Brain Struct Funct 222:4149–4161PubMedGoogle Scholar
  127. Papadopoulos T et al (2007) Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. Embo j 26:3888–3899PubMedPubMedCentralGoogle Scholar
  128. Papadopoulos T, Eulenburg V, Reddy-Alla S, Mansuy IM, Li Y, Betz H (2008) Collybistin is required for both the formation and maintenance of GABAergic postsynapses in the hippocampus. Mol Cell Neurosci 39:161–169PubMedGoogle Scholar
  129. Papadopoulos T et al (2017) Endosomal phosphatidylinositol 3-Phosphate promotes gephyrin clustering and GABAergic neurotransmission at inhibitory postsynapses. J Biol Chem 292:1160–1177PubMedGoogle Scholar
  130. Patrizio A, Specht CG (2016) Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques. Neurophotonics 3:041805PubMedPubMedCentralGoogle Scholar
  131. Patrizio A, Renner M, Pizzarelli R, Triller A, Specht CG (2017) Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers. Sci Rep 7:10899PubMedPubMedCentralGoogle Scholar
  132. Pennacchietti F et al (2017) Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of GABAergic synaptic potentiation. J Neurosci 37:1747–1756PubMedGoogle Scholar
  133. Pfeiffer F, Graham D, Betz H (1982) Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257:9389–9393PubMedGoogle Scholar
  134. Poulopoulos A et al (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63:628–642PubMedGoogle Scholar
  135. Prior P et al (1992) Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8:1161–1170PubMedGoogle Scholar
  136. Ramming M, Kins S, Werner N, Hermann A, Betz H, Kirsch J (2000) Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. Proc Natl Acad Sci U S A 97:10266–10271PubMedPubMedCentralGoogle Scholar
  137. Rathgeber L, Gromova KV, Schaefer I, Breiden P, Lohr C, Kneussel M (2015) GSK3 and KIF5 regulate activity-dependent sorting of gephyrin between axons and dendrites. Eur J Cell Biol 94:173–178PubMedGoogle Scholar
  138. Reiss J, Hahnewald R (2011) Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 32:10–18PubMedGoogle Scholar
  139. Robertson H, Hayes JD, Sutherland C (2018) A partnership with the proteasome; the destructive nature of GSK3. Biochem Pharmacol 147:77–92PubMedPubMedCentralGoogle Scholar
  140. Sabatini DM et al (1999) Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284:1161–1164PubMedGoogle Scholar
  141. Saiepour L, Fuchs C, Patrizi A, Sassoe-Pognetto M, Harvey RJ, Harvey K (2010) Complex role of collybistin and gephyrin in GABAA receptor clustering. J Biol Chem 285:29623–29631PubMedPubMedCentralGoogle Scholar
  142. Saiyed T et al (2007) Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J Biol Chem 282:5625–5632PubMedGoogle Scholar
  143. Saliba RS, Kretschmannova K, Moss SJ (2012) Activity-dependent phosphorylation of GABAA receptors regulates receptor insertion and tonic current. Embo j 31:2937–2951PubMedPubMedCentralGoogle Scholar
  144. Sander B et al (2013) Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Acta Crystallogr D Biol Crystallogr 69:2050–2060PubMedGoogle Scholar
  145. Sassoe-Pognetto M et al (1995) Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. J Comp Neurol 357:1–14PubMedGoogle Scholar
  146. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517Google Scholar
  147. Schmitt B, Knaus P, Becker CM, Betz H (1987) The Mr 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry 26:805–811PubMedGoogle Scholar
  148. Schorova L, Martin S (2016) Sumoylation in synaptic function and dysfunction. Front Synaptic Neurosci 8:9PubMedPubMedCentralGoogle Scholar
  149. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847PubMedGoogle Scholar
  150. Seira O, Del Rio JA (2014) Glycogen synthase kinase 3 beta (GSK3beta) at the tip of neuronal development and regeneration. Mol Neurobiol 49:931–944PubMedGoogle Scholar
  151. Shimojima K, Sugawara M, Shichiji M, Mukaida S, Takayama R, Imai K, Yamamoto T (2011) Loss-of-function mutation of collybistin is responsible for X-linked mental retardation associated with epilepsy. J Hum Genet 56:561–565PubMedGoogle Scholar
  152. Smith KR, Kittler JT (2010) The cell biology of synaptic inhibition in health and disease. Curr Opin Neurobiol 20:550–556PubMedGoogle Scholar
  153. Smolinsky B, Eichler SA, Buchmeier S, Meier JC, Schwarz G (2008) Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis. J Biol Chem 283:17370–17379PubMedGoogle Scholar
  154. Sola M, Kneussel M, Heck IS, Betz H, Weissenhorn W (2001) X-ray crystal structure of the trimeric N-terminal domain of gephyrin. J Biol Chem 276:25294–25301PubMedGoogle Scholar
  155. Sola M et al (2004) Structural basis of dynamic glycine receptor clustering by gephyrin. Embo j 23:2510–2519PubMedPubMedCentralGoogle Scholar
  156. Soykan T et al (2014) A conformational switch in collybistin determines the differentiation of inhibitory postsynapses. Embo j 33:2113–2133PubMedPubMedCentralGoogle Scholar
  157. Specht CG et al (2013) Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79:308–321PubMedGoogle Scholar
  158. Stallmeyer B, Schwarz G, Schulze J, Nerlich A, Reiss J, Kirsch J, Mendel RR (1999) The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc Natl Acad Sci U S A 96:1333–1338PubMedPubMedCentralGoogle Scholar
  159. Studer R, von Boehmer L, Haenggi T, Schweizer C, Benke D, Rudolph U, Fritschy JM (2006) Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice. Eur J Neurosci 24:1307–1315PubMedGoogle Scholar
  160. Takagi T, Pribilla I, Kirsch J, Betz H (1992) Coexpression of the receptor-associated protein gephyrin changes the ligand binding affinities of alpha 2 glycine receptors. FEBS Lett 303:178–180PubMedGoogle Scholar
  161. Takayama M, Kashiwagi M, Matsusue A, Waters B, Hara K, Ikematsu N, Kubo S (2016) Quantification of immunohistochemical findings of neurofibrillary tangles and senile plaques for a diagnosis of dementia in forensic autopsy cases. Leg Med (Tokyo) 22:82–89Google Scholar
  162. Thind KK, Yamawaki R, Phanwar I, Zhang G, Wen X, Buckmaster PS (2010) Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. J Comp Neurol 518:647–667PubMedPubMedCentralGoogle Scholar
  163. Tretter V, Jacob TC, Mukherjee J, Fritschy JM, Pangalos MN, Moss SJ (2008) The clustering of GABA(A) receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor alpha 2 subunits to gephyrin. J Neurosci 28:1356–1365PubMedGoogle Scholar
  164. Tretter V et al (2011) Molecular basis of the gamma-aminobutyric acid A receptor alpha3 subunit interaction with the clustering protein gephyrin. J Biol Chem 286:37702–37711PubMedPubMedCentralGoogle Scholar
  165. Tyagarajan SK, Ghosh H, Harvey K, Fritschy JM (2011a) Collybistin splice variants differentially interact with gephyrin and Cdc42 to regulate gephyrin clustering at GABAergic synapses. J Cell Sci 124:2786–2796PubMedPubMedCentralGoogle Scholar
  166. Tyagarajan SK et al (2011b) Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc Natl Acad Sci U S A 108:379–384PubMedGoogle Scholar
  167. Tyagarajan SK, Ghosh H, Yevenes GE, Imanishi SY, Zeilhofer HU, Gerrits B, Fritschy JM (2013) Extracellular signal-regulated kinase and glycogen synthase kinase 3beta regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism. J Biol Chem 288:9634–9647PubMedPubMedCentralGoogle Scholar
  168. Uezu A et al (2016) Identification of an elaborate complex mediating postsynaptic inhibition. Science 353:1123–1129PubMedPubMedCentralGoogle Scholar
  169. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215PubMedGoogle Scholar
  170. Unichenko P et al (2017) Autism related neuroligin-4 knockout impairs intracortical processing but not sensory inputs in mouse barrel cortex. Cereb Cortex 28:2873–2886Google Scholar
  171. Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83:449–456PubMedGoogle Scholar
  172. Wang JY et al (2018) ARHGEF9 mutations in epileptic encephalopathy/intellectual disability: toward understanding the mechanism underlying phenotypic variation. Neurogenetics 19:9–16PubMedGoogle Scholar
  173. Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062PubMedGoogle Scholar
  174. Wu Y, Liu D, Song Z (2015) Neuronal networks and energy bursts in epilepsy. Neuroscience 287:175–186PubMedGoogle Scholar
  175. Wuchter J, Beuter S, Treindl F, Herrmann T, Zeck G, Templin MF, Volkmer H (2012) A comprehensive small interfering RNA screen identifies signaling pathways required for gephyrin clustering. J Neurosci 32:14821–14834PubMedGoogle Scholar
  176. Xiang S et al (2006) The crystal structure of Cdc42 in complex with collybistin II, a gephyrin-interacting guanine nucleotide exchange factor. J Mol Biol 359:35–46PubMedGoogle Scholar
  177. Yan J et al (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 10:329–332PubMedGoogle Scholar
  178. Yang Z, Taran E, Webb TI, Lynch JW (2012) Stoichiometry and subunit arrangement of alpha1beta glycine receptors as determined by atomic force microscopy. Biochemistry 51:5229–5231PubMedGoogle Scholar
  179. Yu W, Charych EI, Serwanski DR, Li RW, Ali R, Bahr BA, De Blas AL (2008) Gephyrin interacts with the glutamate receptor interacting protein 1 isoforms at GABAergic synapses. J Neurochem 105:2300–2314PubMedPubMedCentralGoogle Scholar
  180. Zita MM, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E, Zacchi P (2007) Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. Embo j 26:1761–1771PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Cell Biology, Institute for Anatomy and Cell BiologyHeidelberg UniversityHeidelbergGermany

Personalised recommendations