Advertisement

Histochemistry and Cell Biology

, Volume 150, Issue 3, pp 227–233 | Cite as

Perichromatin region: a moveable feast

  • Irene Masiello
  • Stella Siciliani
  • Marco Biggiogera
Review

Abstract

The perichromatin region is an elusive zone of the cell nucleus located at the periphery of the condensed chromatin areas. This region is visible at the electron microscope level under special staining treatments, otherwise it is merged with the border of condensed chromatin. In this 200 nm-thick area, several fundamental cell processes take place, such as replication, DNA repair and transcription. In addition, RNA processing occurs in the perichromatin region, including 5′-capping and 3′-polyadenylation as well as splicing. Recently, it has become clear that also some epigenetics modifications take place there, such as methylation of DNA and RNA on cytosine and adenosine. In summary, this thin interface between chromatin and the interchromatinic space represents the zone where the majority of the functions of DNA in interphase occur, in a place where there is no steric hindrance of condensed chromatin, the products can easily move away toward their target and the enzymes can freely dock.

Keywords

Perichromatin region Cell nucleus Electron microscopy Transcription Replication DNA repair 

Notes

Acknowledgements

This research was supported by the Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022)—Dept. of Biology and Biotechnology “L. Spallanzani”, University of Pavia (to M.B.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allfrey VG (1966) Control mechanisms in ribonucleic acid synthesis. Cancer Res 26(9):2026–2040PubMedGoogle Scholar
  2. Bernhard W (1969) A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27(3):250–265CrossRefPubMedGoogle Scholar
  3. Bernhard W, Granboulan N (1963) The fine structure of the cancer cell nucleus. Exp Cell Res 24:19–53CrossRefGoogle Scholar
  4. Biggiogera M, Fakan S (1998) Fine structural specific visualization of RNA on ultrathin sections. J Histochem Cytochem 46:389–395CrossRefPubMedGoogle Scholar
  5. Biggiogera M, Masiello I (2017) Visualizing RNA at electron microscopy by terbium citrate. Methods Mol Biol 1560:277–283CrossRefPubMedGoogle Scholar
  6. Bouchet-Marquis C, Dubochet J, Fakan S (2006) Cryoelectron microscopy of vitrified sections: a new challenge for the analysis of functional nuclear architecture. Histochem Cell Biol 125(1–2):43–51CrossRefPubMedGoogle Scholar
  7. Cardinale S, Cisterna B, Bonetti P, Aringhieri C, Biggiogera M, Barabino SM (2007) Subnuclear localization and dynamics of the Pre-mRNA 3′ end processing factor mammalian cleavage factor I 68-kDa subunit. Mol Biol Cell 18(4):1282–1292CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 16:1449–1462CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, Fakan S (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Bio Cell 10:211–223CrossRefGoogle Scholar
  10. Cmarko D, Verschure PJ, Otte AP, van Driel R, Fakan S (2002) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116:335–343CrossRefGoogle Scholar
  11. Cortini R, Filion GJ (2018) Theoretical principles of transcription factor traffic on folded chromatin. Nat Commun 9(1):1740CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Boni U (1994) The interphase nucleus as a dynamic structure. Int Rev Cytol 150:149–171CrossRefPubMedGoogle Scholar
  13. Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 4:86–90CrossRefPubMedGoogle Scholar
  14. Fakan S, Bernhard W (1971) Localisation of rapidly and slowly labelled nuclear RNA as visualized by high resolution autoradiography. Exp Cell Res 67:129–141CrossRefPubMedGoogle Scholar
  15. Fakan S, Hankok R (1974) Localization of newly-synthesized DNA in a mammalian cell as visualized by high resolution autoradiography. Exp Cell Res 81:95–102CrossRefGoogle Scholar
  16. Fakan S, Puvion E (1980) The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol 65:255–299CrossRefPubMedGoogle Scholar
  17. Fakan S, van Driel R (2007) The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 18:676–681CrossRefPubMedGoogle Scholar
  18. Fakan S, Puvion E, Sphor G (1976) Localization and characterization of newly synthesized nuclear RNA in isolate rat hepatocytes. Exp Cell Res 99:155–164CrossRefPubMedGoogle Scholar
  19. Fakan S, Leser G, Martin TE (1986) Immunoelectron microscope visualization of nuclear ribonucleoprotein antigens within spread transcription complexes. J Cell Biol 103:1153–1157CrossRefPubMedGoogle Scholar
  20. Gall JG, Callan HG (1962) H3 uridine incorporation in lampbrush chromosomes. Proc Natl Acad Sci 48:562–570CrossRefPubMedGoogle Scholar
  21. Görnemann J, Kotovic KM, Hujer K, Neugebauer KM (2005) Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 19:53–63CrossRefPubMedGoogle Scholar
  22. Hancock R (2012) Structure of metaphase chromosomes: a role for effects of macromolecular crowding. PLoS One 7(4):e36045CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hozak P, Hassan AB, Jackson DA, Cook PR (1993) Visualization of replication factories attached to a nucleoskeleton. Cell 73:361–373CrossRefPubMedGoogle Scholar
  24. Huang S, Deerinck TJ, Ellisman MH, Spector DL (1994) In vivo analysis of the stability and transport of nuclear poly(A) + RNA. J Cell Biol 126:877–899CrossRefPubMedGoogle Scholar
  25. Jaunin F, Visser AE, Cmarko D, Aten JA, Fakan S (2000) Fine structural in situ analysis of nascent DNA movement following DNA replication. Exp Cell Res 260:313–323CrossRefPubMedGoogle Scholar
  26. Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Wang PJ (2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLOS Genet 14:e1007412CrossRefPubMedPubMedCentralGoogle Scholar
  27. Knuckles P, Bühler M (2018) Adenosine methylation as a molecular imprint defining the fate of RNA. FEBS Lett.  https://doi.org/10.1002/1873-3468.13107. (Epub ahead of print)PubMedCrossRefGoogle Scholar
  28. Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Bühler M (2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol 24:561–569CrossRefPubMedGoogle Scholar
  29. Manders EMM, Stap J, Strackee J, van Driel R, Aten JA (1996) Dynamic behavior of DNA replication do- mains. Exp Cell Res 226:328 – 335CrossRefPubMedGoogle Scholar
  30. Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonahardt H, Eick D, Cremer C, Cremer T (2011) Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Bio 75:475–492CrossRefGoogle Scholar
  31. Masiello I, Biggiogera M (2017) Ultrastructural localization of 5-methylcytosine on DNA and RNA. Cell Mol Life Sci 74:3057–3064CrossRefPubMedGoogle Scholar
  32. Mazzotti G, Gobbi P, Manzoli L, Falconi M (1998) Nuclear morphology during the S phase. Microsc Res Tech 40:418–431CrossRefPubMedGoogle Scholar
  33. Monneron A, Bernhard W (1969) Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res 27(3):266–288CrossRefPubMedGoogle Scholar
  34. Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15:902–909CrossRefPubMedGoogle Scholar
  35. Müller WG, Rieder D, Karpova TS, John S, Trajanoski Z, McNally JG (2007) Organization of chromatin and histone modifications at a transcription site. J Cell Biol 177:957–967CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nash RE, Puvion E, Bernhard W (1975) Perichromatin fibrils as components of rapidly labeled extranucleolar RNA. J Ultrastr Res 53:395–405CrossRefGoogle Scholar
  37. Niedojadlo J, Perret-Vivancos C, Kalland KH, Cmarko D, Cremer T, Van Driel R, Fakan S (2011) Transcribed DNA is preferentially located in the perichromatin region of mammalian cell nuclei. Exp Cell Res 317:433–444CrossRefPubMedGoogle Scholar
  38. Puvion E, Bernhard W (1975) Ribonucleoprotein components in liver cell nuclei as visualized by cryoultramicrotomy. J Cell Biol 67(1):200–214CrossRefPubMedGoogle Scholar
  39. Puvion E, Viron A, Assens C, Leduc EH, Jeanteur P (1984) Immunocytochemical identification of nuclear structures containing snRNPs in isolated rat liver cells. J Ultrast Res 87:180–189CrossRefGoogle Scholar
  40. Raska I, Michel LS, Jarnik M, Dundr M, Fakan S, Gasser S, Gassmann M, Hübscher U, Izaurralde E, Martinez E et al (1991) Ultrastructural cryoimmunocytochemistry is a convenient tool for the study of DNA replication in cultured cells. J Electron Microsc Tech 18:91–105CrossRefPubMedGoogle Scholar
  41. Ris H (1961) Ultrastructure and molecular organization of genetic systems. Can J Genet Cytol 3:95–120CrossRefPubMedGoogle Scholar
  42. Rouquette J, Genoud C, Vazquez-Nin GH, Kraus B, Cremer T, Fakan S (2009) Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: a novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res 17:801–810CrossRefPubMedGoogle Scholar
  43. Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30CrossRefPubMedGoogle Scholar
  44. Sobczak-Thepot J, Harper F, Florentin Y, Zindy F, Brechot C, Puvion E (1993) Localization of cyclin A at the sites of cellular DNA replication. Exp Cell Res 206:43–48Google Scholar
  45. Solimando L, Luijsterburg MS, Vecchio L, Vermeulen W, van Driel R, Fakan S (2009) Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci 122:83–91CrossRefPubMedGoogle Scholar
  46. Spector DL, Fu XD, Maniatis T (1991) Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J 10:3467–3481PubMedPubMedCentralCrossRefGoogle Scholar
  47. Spedito A, Cisterna B, Malatesta M, Biggiogera M (2014) Use of halogenated precursors to define a transcription time window after treatment with hypometabolizing molecules. Histochem Cell Biol 141:243–249CrossRefPubMedGoogle Scholar
  48. Swift H (1959) Studies on nuclear fine structure. Brookhaven Symp Biol 12:134–152PubMedGoogle Scholar
  49. Testillano PS, Gorab E, Risueno MC (1994) A new approach to map transcription sites at the ultrastructural level. J Histochem Cytochem 42:1–10CrossRefPubMedGoogle Scholar
  50. Trentani A, Testillano PS, Risueño MC, Biggiogera M (2003) Visualization of transcription sites at the electron microscope. Eur J Histochem 47:195–200CrossRefPubMedGoogle Scholar
  51. Vázquez Nin GH, Echeverría OM, Ortiz R, Ubaldo E, Fakan S (1997) Effects of hypophyseal hormones on transcription and RNA export to the cytoplasm. Exp Cell Res 236:519–526CrossRefPubMedGoogle Scholar
  52. Visa N, Puvion-Dutilleul F, Harper F, Bachellerie JP, Puvion E (1993) Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization. Exp Cell Res 208:19–34CrossRefPubMedGoogle Scholar
  53. von Schack ML, Fakan S, Villiger W (1991) Some applications of cryosubstitution in ultrastructural studies of the cell nucleus. Biol Cell 72(1–2):113–119CrossRefGoogle Scholar
  54. Watson M (1962) Observations on a granule associated with chromatin in the nuclei of cells of rat and mouse. J Cell Biol 13:162–167CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wee CL, Teo S, Oey NE, Wright GD, VanDongen HMA, VanDongen AMJ (2014) Nuclear Arc interacts with the histone acetyltransferase Tip60 to modify H4K12 acetylation. eNeuro.  https://doi.org/10.1523/ENEURO.0019-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, Li W (2017) Metl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Res 27:1100–1114CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yang Y, Hsu PJ, Chen YS, Yang YG (2018) Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–624CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly

Personalised recommendations