Advertisement

Histochemistry and Cell Biology

, Volume 150, Issue 3, pp 291–300 | Cite as

The distribution patterns of COMP and matrilin-3 in septal, alar and triangular cartilages of the human nose

  • Paul Severin Wiggenhauser
  • Silke Schwarz
  • Nicole Rotter
Original Paper
  • 58 Downloads

Abstract

The biomechanical characteristics of septal cartilage depend strongly on the distinct extracellular matrix of cartilage tissue; therefore, it is essential that the components of this matrix are identified and understood. Cartilage oligomeric matrix protein (COMP) and matrilin-3 are localised in articular cartilage. This study was the first to examine all subtypes of mature human nasal cartilages (alar, triangular and septal) with specific attention to the distribution of COMP and matrilin-3. Three whole fresh-frozen noses from human donors were dissected, and exemplary biopsies were examined using histochemical staining (haematoxylin and eosin and Alcian blue) and immunohistochemistry (collagen II, COMP and matrilin-3). The following three zones within the nasal cartilage were identified: superficial, intermediate and central. COMP was detected as highest in the intermediate zones in all three subtypes of nasal cartilage, whereas matrilin-3 was detected with pericellular deposition mainly within septal cartilage predominantly in the superficial zones. The distinct staining patterns of COMP and matrilin-3 underscore the different functional roles of both proteins in nasal cartilage. According to the literature, COMP might be involved with collagen II in the formation of networks, whereas matrilin-3 is reported to prevent ossification or regulate mechanosensitivity. The predominant staining observed in septal cartilage suggests matrilin-3’s modulatory role because of its presence in the osteochondral junctional zone and given that the biomechanical load in septal cartilage is different from that in alar or triangular cartilage. In conclusion, COMP and matrilin-3 were detected in mature human nasal cartilage but displayed different staining patterns that might be explained by the functional roles of the respective matrix protein; however, further research is necessary to identify and define the functional aspects of this morphological difference.

Keywords

Human nasal cartilage Septal cartilage COMP Matrilin-3 Extracellular matrix Zonal distribution pattern 

Notes

Acknowledgements

The authors thank M. Jerg and G. Cudek for excellent technical support. The antibody II-II6B3 was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, USA.

Compliance with ethical standards

Conflict of interest

None of the authors have a conflict of interest to report.

References

  1. Belluoccio D, Trueb B (1997) Matrilin-3 from chicken cartilage. FEBS Lett 415(2):212–216CrossRefPubMedGoogle Scholar
  2. Belluoccio D, Schenker T, Baici A, Trueb B (1998) Characterization of human matrilin-3 (MATN3). Genomics 53(3):391–394.  https://doi.org/10.1006/geno.1998.5519 CrossRefPubMedGoogle Scholar
  3. Bleuel J, Zaucke F, Bruggemann GP, Heilig J, Wolter ML, Hamann N, Firner S, Niehoff A (2015) Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro. J Biomech Eng 137(6):061009.  https://doi.org/10.1115/1.4030053 CrossRefPubMedGoogle Scholar
  4. Briggs MD, Hoffman SM, King LM, Olsen AS, Mohrenweiser H, Leroy JG, Mortier GR, Rimoin DL, Lachman RS, Gaines ES et al (1995) Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 10(3):330–336.  https://doi.org/10.1038/ng0795-330 CrossRefPubMedGoogle Scholar
  5. Carter TE, Taylor KA, Spritzer CE, Utturkar GM, Taylor DC, Moorman CT, Garrett WE, Guilak F, McNulty AL, DeFrate LE (2015) In vivo cartilage strain increases following medial meniscal tear and correlates with synovial fluid matrix metalloproteinase activity. J Biomech 48(8):1461–1468.  https://doi.org/10.1016/j.jbiomech.2015.02.030 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen Q, Johnson DM, Haudenschild DR, Goetinck PF (1996) Cartilage matrix protein: expression patterns in chicken, mouse, and human. Ann N Y Acad Sci 785:238–240CrossRefPubMedGoogle Scholar
  7. DiCesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M (1994) Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett 354(2):237–240CrossRefPubMedGoogle Scholar
  8. DiCesare PE, Morgelin M, Carlson CS, Pasumarti S, Paulsson M (1995) Cartilage oligomeric matrix protein: isolation and characterization from human articular cartilage. J Orthop Res 13(3):422–428.  https://doi.org/10.1002/jor.1100130316 CrossRefPubMedGoogle Scholar
  9. Fresquet M, Jowitt TA, Ylostalo J, Coffey P, Meadows RS, Ala-Kokko L, Thornton DJ, Briggs MD (2007) Structural and functional characterization of recombinant matrilin-3 A-domain and implications for human genetic bone diseases. J Biol Chem 282(48):34634–34643.  https://doi.org/10.1074/jbc.M705301200 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FF, Harrison WR, Francomano CA, Prange CK, Lennon GG, Deere M et al (1995) Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 10(3):325–329.  https://doi.org/10.1038/ng0795-325 CrossRefPubMedGoogle Scholar
  11. Hecht JT, Deere M, Putnam E, Cole W, Vertel B, Chen H, Lawler J (1998) Characterization of cartilage oligomeric matrix protein (COMP) in human normal and pseudoachondroplasia musculoskeletal tissues. Matrix Biol 17(4):269–278CrossRefPubMedGoogle Scholar
  12. Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, Sommarin Y, Wendel M, Oldberg A, Heinegard D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267(9):6132–6136PubMedGoogle Scholar
  13. Homicz MR, McGowan KB, Lottman LM, Beh G, Sah RL, Watson D (2003) A compositional analysis of human nasal septal cartilage. Arch Facial Plast Surg 5(1):53–58CrossRefPubMedGoogle Scholar
  14. Jayasuriya CT, Goldring MB, Terek R, Chen Q (2012) Matrilin-3 induction of IL-1 receptor antagonist is required for up-regulating collagen II and aggrecan and down-regulating ADAMTS-5 gene expression. Arthritis Res Ther 14(5):R197.  https://doi.org/10.1186/ar4033 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jiao Q, Wei L, Chen C, Li P, Wang X, Li Y, Guo L, Zhang C, Wei X (2016) Cartilage oligomeric matrix protein and hyaluronic acid are sensitive serum biomarkers for early cartilage lesions in the knee joint. Biomarkers 21(2):146–151.  https://doi.org/10.3109/1354750X.2015.1118547 CrossRefPubMedGoogle Scholar
  16. Kanbe K, Yang X, Wei L, Sun C, Chen Q (2007) Pericellular matrilins regulate activation of chondrocytes by cyclic load-induced matrix deformation. J Bone Miner Res 22(2):318–328.  https://doi.org/10.1359/jbmr.061104 CrossRefPubMedGoogle Scholar
  17. Klatt AR, Nitsche DP, Kobbe B, Morgelin M, Paulsson M, Wagener R (2000) Molecular structure and tissue distribution of matrilin-3, a filament-forming extracellular matrix protein expressed during skeletal development. J Biol Chem 275(6):3999–4006CrossRefPubMedGoogle Scholar
  18. Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554):808–809CrossRefPubMedGoogle Scholar
  19. Maurer P, Hohenester E (1997) Structural and functional aspects of calcium binding in extracellular matrix proteins. Matrix Biol 15(8–9):569–580 (discussion 581) CrossRefPubMedGoogle Scholar
  20. Morgelin M, Heinegard D, Engel J, Paulsson M (1992) Electron microscopy of native cartilage oligomeric matrix protein purified from the Swarm rat chondrosarcoma reveals a five-armed structure. J Biol Chem 267(9):6137–6141PubMedGoogle Scholar
  21. Nicolae C, Ko YP, Miosge N, Niehoff A, Studer D, Enggist L, Hunziker EB, Paulsson M, Wagener R, Aszodi A (2007) Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice. J Biol Chem 282(30):22163–22175.  https://doi.org/10.1074/jbc.M610994200 CrossRefPubMedGoogle Scholar
  22. Nimeskern L, Utomo L, Lehtoviita I, Fessel G, Snedeker JG, van Osch GJ, Muller R, Stok KS (2016) Tissue composition regulates distinct viscoelastic responses in auricular and articular cartilage. J Biomech 49(3):344–352.  https://doi.org/10.1016/j.jbiomech.2015.12.032 CrossRefPubMedGoogle Scholar
  23. Okimura A, Okada Y, Makihira S, Pan H, Yu L, Tanne K, Imai K, Yamada H, Kawamoto T, Noshiro M, Yan W, Kato Y (1997) Enhancement of cartilage matrix protein synthesis in arthritic cartilage. Arthritis Rheum 40 (6):1029–1036CrossRefPubMedGoogle Scholar
  24. Oldberg A, Antonsson P, Lindblom K, Heinegard D (1992) COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J Biol Chem 267(31):22346–22350PubMedGoogle Scholar
  25. Popko M, Bleys RL, De Groot JW, Huizing EH (2007) Histological structure of the nasal cartilages and their perichondrial envelope. I. The septal and lobular cartilage. Rhinology 45:148–152PubMedGoogle Scholar
  26. Pullig O, Weseloh G, Klatt AR, Wagener R, Swoboda B (2002) Matrilin-3 in human articular cartilage: increased expression in osteoarthritis. Osteoarthritis Cartilage 10:252–263CrossRefGoogle Scholar
  27. Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Durselen L, Ignatius A, Walther P, Breiter R, Rotter N (2012) Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 18(21–22):2195–2209.  https://doi.org/10.1089/ten.TEA.2011.0705 CrossRefPubMedGoogle Scholar
  28. Shen Z, Heinegard D, Sommarin Y (1995) Distribution and expression of cartilage oligomeric matrix protein and bone sialoprotein show marked changes during rat femoral head development. Matrix Biol 14(9):773–781CrossRefPubMedGoogle Scholar
  29. Smith RK, Zunino L, Webbon PM, Heinegard D (1997) The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biol 16(5):255–271CrossRefPubMedGoogle Scholar
  30. van der Weyden L, Wei L, Luo J, Yang X, Birk DE, Adams DJ, Bradley A, Chen Q (2006) Functional knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis. Am J Pathol 169(2):515–527.  https://doi.org/10.2353/ajpath.2006.050981 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wagener R, Kobbe B, Paulsson M (1997) Primary structure of matrilin-3, a new member of a family of extracellular matrix proteins related to cartilage matrix protein (matrilin-1) and von Willebrand factor. FEBS Lett 413(1):129–134CrossRefPubMedGoogle Scholar
  32. Wu JJ, Eyre DR (1998) Matrilin-3 forms disulfide-linked oligomers with matrilin-1 in bovine epiphyseal cartilage. J Biol Chem 273(28):17433–17438CrossRefPubMedGoogle Scholar
  33. Xia Y, Zheng S, Szarko M, Lee J (2012) Anisotropic properties of bovine nasal cartilage. Microsc Res Tech 75(3):300–306.  https://doi.org/10.1002/jemt.21058 CrossRefPubMedGoogle Scholar
  34. Yamada K (1973) The effect of digestion with Streptomyces hyaluronidase upon certain histochemical reactions of hyaluronic acid-containing tissues. J Histochem Cytochem 21(9):794–803CrossRefPubMedGoogle Scholar
  35. Yang X, Trehan SK, Guan Y, Sun C, Moore DC, Jayasuriya CT, Chen Q (2014) Matrilin-3 inhibits chondrocyte hypertrophy as a bone morphogenetic protein-2 antagonist. J Biol Chem 289(50):34768–34779.  https://doi.org/10.1074/jbc.M114.583104 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zaucke F, Dinser R, Maurer P, Paulsson M (2001) Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem J 358(Pt 1):17–24CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, Li Z, Liu Y, Xu X, Wang Y (2015) SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthr Cartil 23(12):2259–2268.  https://doi.org/10.1016/j.joca.2015.06.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paul Severin Wiggenhauser
    • 1
    • 2
  • Silke Schwarz
    • 1
    • 3
  • Nicole Rotter
    • 1
    • 4
  1. 1.Department of Oto-Rhino-Laryngology, Head and Neck SurgeryUlm University Medical CenterUlmGermany
  2. 2.Department of Hand, Plastic and Aesthetic SurgeryUniversity Hospital, Ludwig-Maximilians UniversityMunichGermany
  3. 3.Department of AnatomyParacelsus Medical UniversityNurembergGermany
  4. 4.Department of Oto-Rhino-LaryngologyUniversity Hospital Mannheim, University of HeidelbergMannheimGermany

Personalised recommendations