Histochemistry and Cell Biology

, Volume 149, Issue 4, pp 393–404 | Cite as

Inflammation, mesenchymal stem cells and bone regeneration

Review

Abstract

Achieving satisfactory reconstruction of bone remains an important goal in orthopedic and dental conditions such as bone trauma, osteoporosis, arthritis, osteonecrosis, and periodontitis. Appropriate temporal and spatial differentiation of mesenchymal stem cells (MSCs) is essential for postnatal bone regeneration. Additionally, an acute inflammatory response is crucial at the onset of bone repair, while an adaptive immune response has important implications during late bone remodeling. Various reports have indicated bidirectional interactions between MSCs and inflammatory cells or molecules. For example, inflammatory cells can recruit MSCs, direct their migration and differentiation, so as to exert anabolic effects on bone repair. Furthermore, both pro-inflammatory and anti-inflammatory cytokines can regulate MSCs properties and subsequent bone regeneration. MSCs have demonstrated highly immunosuppressive functions, such as inhibiting the differentiation of monocytes/hematopoietic precursors and suppressing the secretion of pro-inflammatory cytokines. This review emphasizes the important interactions between inflammatory stimuli, MSCs, and bone regeneration as well as the underlying regulatory mechanisms. Better understanding of these principles will provide new opportunities for promoting bone regeneration and the treatment of bone loss associated with immunological diseases.

Keywords

Immune cells Inflammatory cytokines Mesenchymal stem cell Immunomodulation Bone regeneration 

Notes

Acknowledgements

This study was partially supported by the National Nature Science Foundation of China (Grant No: 81470719, 81611140133) to M. Li, Shandong Provincial Natural Science Foundation (Grant No: ZR201702180144) to H. Liu, China Postdoctoral Science Foundation (Grant No: 2017M622220) to H. Liu and the construction engineering special fund of “Taishan Scholars” (Grant No: ts201511106) to X. Xu.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Almeida CR, Caires HR, Vasconcelos DP, Barbosa MA (2016) NAP-2 secreted by human NK cells can stimulate mesenchymal stem/stromal cell recruitment. Stem Cell Rep 6:466–473.  https://doi.org/10.1016/j.stemcr.2016.02.012 CrossRefGoogle Scholar
  2. Ansari S, Chen C, Hasani-Sadrabadi MM, Yu B, Zadeh HH, Wu BM, Moshaverinia A (2017) Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk. Acta Biomater 60:181–189.  https://doi.org/10.1016/j.actbio.2017.07.017 PubMedCrossRefGoogle Scholar
  3. Arai F et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161.  https://doi.org/10.1016/j.cell.2004.07.004 PubMedCrossRefGoogle Scholar
  4. Arboleya L, Castaneda S (2013) Osteoimmunology: the study of the relationship between the immune system and bone tissue. Reumatol Clin 9:303–315.  https://doi.org/10.1016/j.reuma.2013.02.008 PubMedCrossRefGoogle Scholar
  5. Bais M et al (2009) Transcriptional analysis of fracture healing and the induction of embryonic stem cell-related genes. PLoS One 4:e5393.  https://doi.org/10.1371/journal.pone.0005393 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216.  https://doi.org/10.1371/journal.pgen.0020216 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barbul A, Breslin RJ, Woodyard JP, Wasserkrug HL, Efron G (1989) The effect of in vivo T helper and T suppressor lymphocyte depletion on wound healing. Ann Surg 209:479–483PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bastidas-Coral AP, Bakker AD, Zandieh-Doulabi B, Kleverlaan CJ, Bravenboer N, Forouzanfar T, Klein-Nulend J (2016) Cytokines TNF-alpha, IL-6, IL-17F, and IL-4 differentially affect osteogenic differentiation of human adipose stem. Cells Stem Cells Int 2016:1318256.  https://doi.org/10.1155/2016/1318256 PubMedGoogle Scholar
  9. Behfarnia P, Birang R, Andalib AR, Asadi S (2010) Comparative Evaluation of IFNgamma, IL4 and IL17 Cytokines in Healthy Gingiva and Moderate to Advanced Chronic Periodontitis. Dent Res J (Isfahan) 7:45–50Google Scholar
  10. Ben David D, Reznick AZ, Srouji S, Livne E (2010) Exposure to pro-inflammatory cytokines upregulates MMP-9 synthesis by mesenchymal stem cells-derived osteoprogenitors. Histochem Cell Biol 129:589–597CrossRefGoogle Scholar
  11. Berendsen AD, Olsen BR (2015) Bone development. Bone 80:14–18.  https://doi.org/10.1016/j.bone.2015.04.035 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057.  https://doi.org/10.1038/nature07036 PubMedCrossRefGoogle Scholar
  13. Bocelli-Tyndall C, Bracci L, Schaeren S, Feder-Mengus C, Barbero A, Tyndall A, Spagnoli GC (2009) Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Ann Rheum Dis 68:1352–1359.  https://doi.org/10.1136/ard.2008.094003 PubMedCrossRefGoogle Scholar
  14. Byun MR, Jeong H, Bae SJ, Kim AR, Hwang ES, Hong JH (2012) TAZ is required for the osteogenic and anti-adipogenic activities of kaempferol. Bone 50:364–372.  https://doi.org/10.1016/j.bone.2011.10.035 PubMedCrossRefGoogle Scholar
  15. Calvi LM et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846.  https://doi.org/10.1038/nature02040 PubMedCrossRefGoogle Scholar
  16. Canturk NZ, Esen N, Vural B, Canturk Z, Kirkali G, Oktay G, Solakoglu S (2001) The relationship between neutrophils and incisional wound healing. Skin Pharmacol Appl Skin Physiol 14:108–116 doi:56340PubMedCrossRefGoogle Scholar
  17. Cao X, Chen D (2005) The BMP signaling and in vivo bone formation. Gene 357:1–8.  https://doi.org/10.1016/j.gene.2005.06.017 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Caplan AI (2016) MSCs: the sentinel and safe-guards of injury. J Cell Physiol 231:1413–1416.  https://doi.org/10.1002/jcp.25255 PubMedCrossRefGoogle Scholar
  19. Champagne CM, Takebe J, Offenbacher S, Cooper LF (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30:26–31PubMedCrossRefGoogle Scholar
  20. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125:S3-23.  https://doi.org/10.1016/j.jaci.2009.12.980 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen FM, Lu H, Wu LA, Gao LN, An Y, Zhang J (2013) Surface-engineering of glycidyl methacrylated dextran/gelatin microcapsules with thermo-responsive poly(N-isopropylacrylamide) gates for controlled delivery of stromal cell-derived factor-1 alpha. Biomaterials 34:6515–6527.  https://doi.org/10.1016/j.biomaterials.2013.05.014 PubMedCrossRefGoogle Scholar
  22. Chinnadurai R, Copland IB, Patel SR, Galipeau J (2014) IDO-independent suppression of T cell effector function by IFN-gamma-licensed human mesenchymal stromal cells. J Immunol 192:1491–1501.  https://doi.org/10.4049/jimmunol.1301828 PubMedCrossRefGoogle Scholar
  23. Cho SW (2015) Role of osteal macrophages in bone metabolism. J Pathol Transl Med 49:102–104.  https://doi.org/10.4132/jptm.2015.02.02 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Choy L, Skillington J, Derynck R (2000) Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 149:667–682PubMedPubMedCentralCrossRefGoogle Scholar
  25. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143.  https://doi.org/10.1038/nrrheum.2012.1 PubMedCrossRefGoogle Scholar
  26. Colburn NT, Zaal KJ, Wang F, Tuan RS (2009) A role for gamma/delta T cells in a mouse model of fracture healing. Arthritis Rheum 60:1694–1703.  https://doi.org/10.1002/art.24520 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Corcione A et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372.  https://doi.org/10.1182/blood-2005-07-2657 PubMedCrossRefGoogle Scholar
  28. Croes M et al (2016) Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 84:262–270.  https://doi.org/10.1016/j.bone.2016.01.010 PubMedCrossRefGoogle Scholar
  29. Dalle Carbonare L, Innamorati G, Valenti MT (2012) Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev 8:891–897.  https://doi.org/10.1007/s12015-011-9337-4 PubMedCrossRefGoogle Scholar
  30. Darlington GJ, Ross SE, MacDougald OA (1998) The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273:30057–30060PubMedCrossRefGoogle Scholar
  31. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750.  https://doi.org/10.1016/j.devcel.2005.03.016 PubMedCrossRefGoogle Scholar
  32. Deng W, Han Q, Liao L, You S, Deng H, Zhao RC (2005) Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol 24:458–463.  https://doi.org/10.1089/dna.2005.24.458 PubMedCrossRefGoogle Scholar
  33. Deng Y et al (2014) Umbilical cord-derived mesenchymal stem cells instruct dendritic cells to acquire tolerogenic phenotypes through the IL-6-mediated upregulation of SOCS1. Stem Cells Dev 23:2080–2092.  https://doi.org/10.1089/scd.2013.0559 PubMedCrossRefGoogle Scholar
  34. Di Nicola M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedCrossRefGoogle Scholar
  35. Diarra D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163.  https://doi.org/10.1038/nm1538 PubMedCrossRefGoogle Scholar
  36. Dighe AS, Yang S, Madhu V, Balian G, Cui Q (2013) Interferon gamma and T cells inhibit osteogenesis induced by allogeneic mesenchymal stromal cells. J Orthop Res 31:227–234.  https://doi.org/10.1002/jor.22212 PubMedCrossRefGoogle Scholar
  37. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cell Ther Position Statement Cytotherapy 8:315–317.  https://doi.org/10.1080/14653240600855905 Google Scholar
  38. Dresner-Pollak R, Gelb N, Rachmilewitz D, Karmeli F, Weinreb M (2004) Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of. long bones Gastroenterology 127:792–801PubMedCrossRefGoogle Scholar
  39. Du L, Yang P, Ge S (2012) Stromal cell-derived factor-1 significantly induces proliferation, migration, and collagen type I expression in a human periodontal ligament stem cell subpopulation. J Periodontol 83:379–388.  https://doi.org/10.1902/jop.2011.110201 PubMedCrossRefGoogle Scholar
  40. Dudakov JA et al (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science 336:91–95.  https://doi.org/10.1126/science.1218004 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Duque G, Huang DC, Macoritto M, Rivas D, Yang XF, Ste-Marie LG, Kremer R (2009) Autocrine regulation of interferon gamma in mesenchymal stem cells plays a role in early osteoblastogenesis. Stem Cells 27:550–558.  https://doi.org/10.1634/stemcells.2008-0886 PubMedCrossRefGoogle Scholar
  42. Faienza MF, Ventura A, Marzano F, Cavallo L (2013) Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 2013:575936.  https://doi.org/10.1155/2013/575936 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66PubMedCrossRefGoogle Scholar
  44. Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G (2013) Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem 114:220–229.  https://doi.org/10.1002/jcb.24357 PubMedCrossRefGoogle Scholar
  45. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274PubMedGoogle Scholar
  46. Fromigue O, Marie PJ, Lomri A (1998) Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J Cell Biochem 68:411–426PubMedCrossRefGoogle Scholar
  47. Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part I Clin Orthop Relat Res:283–293Google Scholar
  48. Gao Y et al (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117:122–132.  https://doi.org/10.1172/JCI30074 PubMedCrossRefGoogle Scholar
  49. Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA (2017) Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg 9:13–19.  https://doi.org/10.1111/os.12304
  50. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Cruceta J, Graves BD, Einhorn TA (2001) Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs 169:285–294 doi:47893PubMedCrossRefGoogle Scholar
  51. Gerstenfeld LC et al (2003a) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18:1584–1592.  https://doi.org/10.1359/jbmr.2003.18.9.1584 PubMedCrossRefGoogle Scholar
  52. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003b) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884.  https://doi.org/10.1002/jcb.10435 PubMedCrossRefGoogle Scholar
  53. Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312.  https://doi.org/10.4049/jimmunol.0902007 PubMedCrossRefGoogle Scholar
  54. Godot V et al (2007) H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J Allergy Clin Immunol 120:827–834.  https://doi.org/10.1016/j.jaci.2007.05.046 PubMedCrossRefGoogle Scholar
  55. Greenblatt MB, Shim JH (2013) Osteoimmunology: a brief introduction. Immune Netw 13:111–115.  https://doi.org/10.4110/in.2013.13.4.111 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Han X et al (2014) Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ 21:1758–1768.  https://doi.org/10.1038/cdd.2014.85 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Harrison JR, Petersen DN, Lichtler AC, Mador AT, Rowe DW, Kream BE (1989) 1,25-Dihydroxyvitamin D3 inhibits transcription of type I collagen genes in the rat osteosarcoma cell line ROS 17/2.8. Endocrinology 125:327–333.  https://doi.org/10.1210/endo-125-1-327 PubMedCrossRefGoogle Scholar
  58. Hock JM, Canalis E, Centrella M (1990) Transforming growth factor-beta stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae. Endocrinology 126:421–426.  https://doi.org/10.1210/endo-126-1-421 PubMedCrossRefGoogle Scholar
  59. Hoeppner LH, Secreto FJ, Westendorf JJ (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 13:485–496.  https://doi.org/10.1517/14728220902841961 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hong HS et al (2009) A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med 15:425–435.  https://doi.org/10.1038/nm.1909 PubMedCrossRefGoogle Scholar
  61. Huang H, Zhao N, Xu X, Xu Y, Li S, Zhang J, Yang P (2011) Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif 44:420–427.  https://doi.org/10.1111/j.1365-2184.2011.00769.x PubMedCrossRefGoogle Scholar
  62. James AW (2013) Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica 2013:684736  https://doi.org/10.1155/2013/684736 PubMedPubMedCentralCrossRefGoogle Scholar
  63. James AW, Pan A, Chiang M, Zara JN, Zhang X, Ting K, Soo C (2011) A new function of Nell-1 protein in repressing adipogenic differentiation Biochem. Biophys Res Commun 411:126–131.  https://doi.org/10.1016/j.bbrc.2011.06.111 CrossRefGoogle Scholar
  64. Janson IA, Putnam AJ (2015) Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A 103:1246–1258.  https://doi.org/10.1002/jbm.a.35254 PubMedCrossRefGoogle Scholar
  65. Jing D, Hao J, Shen Y, Tang G, Li ML, Huang SH, Zhao ZH (2015) The role of microRNAs in bone remodeling. Int J Oral Sci 7:131–143.  https://doi.org/10.1038/ijos.2015.22 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kamiya N (2012) The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr Mol Pharmacol 5:153–163PubMedCrossRefGoogle Scholar
  67. Kang MI et al (2007) Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem 102:224–239.  https://doi.org/10.1002/jcb.21291 PubMedCrossRefGoogle Scholar
  68. Karaoz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F, Kasap M (2009) Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol 132:533–546PubMedCrossRefGoogle Scholar
  69. Kim KS et al (2013) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol Aging 34:2408–2420.  https://doi.org/10.1016/j.neurobiolaging.2013.03.029 PubMedCrossRefGoogle Scholar
  70. Kitaura H, Zhou P, Kim HJ, Novack DV, Ross FP, Teitelbaum SL (2005) M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest 115:3418–3427.  https://doi.org/10.1172/JCI26132 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T (2013) Immunological reaction in TNF-alpha-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol 2013:181849.  https://doi.org/10.1155/2013/181849 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kobayashi K et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kolar P et al (2010) The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev 16:427–434.  https://doi.org/10.1089/ten.TEB.2009.0687 PubMedCrossRefGoogle Scholar
  74. Kollet O et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664.  https://doi.org/10.1038/nm1417 PubMedCrossRefGoogle Scholar
  75. Komori T (2010) Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol 658:43–49.  https://doi.org/10.1007/978-1-4419-1050-9_5 PubMedCrossRefGoogle Scholar
  76. Kong YY et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309.  https://doi.org/10.1038/46303 PubMedCrossRefGoogle Scholar
  77. Kotake S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352.  https://doi.org/10.1172/JCI5703 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kovach TK, Dighe AS, Lobo PI, Cui Q (2015) Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res 2015:752510  https://doi.org/10.1155/2015/752510
  79. Krampera M (2011) Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia 25:1408–1414.  https://doi.org/10.1038/leu.2011.108 PubMedCrossRefGoogle Scholar
  80. Lange J, Sapozhnikova A, Lu C, Hu D, Li X, Miclau T, 3rd, Marcucio RS (2010) Action of IL-1beta during fracture healing. J Orthop Res 28:778–784  https://doi.org/10.1002/jor.21061 PubMedPubMedCentralGoogle Scholar
  81. Lee Y (2013) The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep 46:479–483PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lee DK, Song SU (2017) Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications. Cell Immunol.  https://doi.org/10.1016/j.cellimm.2017.08.009 PubMedCentralGoogle Scholar
  83. Lee KS et al (2000) Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20:8783–8792PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB (2006) Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol 20:2432–2443.  https://doi.org/10.1210/me.2006-0061 PubMedCrossRefGoogle Scholar
  85. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study Lancet 376:440–448.  https://doi.org/10.1016/S0140-6736(10)60668-X PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk HD (2015) Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol 6:184.  https://doi.org/10.3389/fphar.2015.00184 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Li M et al (2014) Chinese bone turnover marker study: reference ranges for C-terminal telopeptide of type I collagen and procollagen I N-terminal peptide by age and gender. PLoS One 9:e103841.  https://doi.org/10.1371/journal.pone.0103841 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Li Pira G, Ivaldi F, Bottone L, Quarto R, Manca F (2006) Human bone marrow stromal cells hamper specific interactions of CD4 and CD8 T lymphocytes with antigen-presenting cells. Hum Immunol 67:976–985.  https://doi.org/10.1016/j.humimm.2006.08.298 PubMedCrossRefGoogle Scholar
  89. Liu T et al (2014) A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3. Bone 67:156–165.  https://doi.org/10.1016/j.bone.2014.07.004 PubMedCrossRefGoogle Scholar
  90. Liu H, Li M, Du L, Yang P, Ge S (2015) Local administration of stromal cell-derived factor-1 promotes stem cell recruitment and bone regeneration in a rat periodontal bone defect model. Mater Sci Eng C Mater Biol Appl 53:83–94.  https://doi.org/10.1016/j.msec.2015.04.002 PubMedCrossRefGoogle Scholar
  91. Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB (2016) Inflammation fracture bone repair Bone 86:119–130.  https://doi.org/10.1016/j.bone.2016.02.020 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lorenzo J (2000) Interactions between immune and bone cells: new insights with many remaining questions. J Clin Invest 106:749–752.  https://doi.org/10.1172/JCI11089 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Luz-Crawford P et al (2013) Mesenchymal stem cells generate a CD4+ CD25+ Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells Stem. Cell Res Ther 4:65.  https://doi.org/10.1186/scrt216 CrossRefGoogle Scholar
  94. Mabuchi Y, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y (2013) Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int 2013:507301.  https://doi.org/10.1155/2013/507301 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23:552–563.  https://doi.org/10.1038/sj.emboj.7600067 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maggini J et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252.  https://doi.org/10.1371/journal.pone.0009252 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555.  https://doi.org/10.1016/j.injury.2011.03.031 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H (2013) Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2:455–463.  https://doi.org/10.5966/sctm.2012-0184 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Miller RR, Cappola AR, Shardell MD, Hawkes WG, Yu-Yahiro JA, Hebel JR, Magaziner J (2006) Persistent changes in interleukin-6 and lower extremity function following hip fracture. J Gerontol A Biol Sci Med Sci 61:1053–1058PubMedCrossRefGoogle Scholar
  100. Mountziaris PM, Mikos AG (2008) Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev 14:179–186.  https://doi.org/10.1089/ten.teb.2008.0038 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mountziaris PM, Spicer PP, Kasper FK, Mikos AG (2011) Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev 17:393–402.  https://doi.org/10.1089/ten.TEB.2011.0182 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347–5354PubMedGoogle Scholar
  103. Nam D et al (2012) T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS One 7:e40044.  https://doi.org/10.1371/journal.pone.0040044 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Niu Y et al (2017) Modulating the phenotype of host macrophages to enhance osteogenesis in MSC-laden hydrogels: design of a glucomannan coating material. Biomaterials 139:39–55.  https://doi.org/10.1016/j.biomaterials.2017.05.042 PubMedCrossRefGoogle Scholar
  105. Noda M, Vogel RL, Craig AM, Prahl J, DeLuca HF, Denhardt DT (1990) Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proc Natl Acad Sci USA 87:9995–9999PubMedPubMedCentralCrossRefGoogle Scholar
  106. Noel D et al (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85.  https://doi.org/10.1634/stemcells.22-1-74 PubMedCrossRefGoogle Scholar
  107. Noordin S, Glowacki J (2016) Parathyroid hormone and its receptor gene polymorphisms: implications in osteoporosis and in fracture healing. Rheumatol Int 36:1–6.  https://doi.org/10.1007/s00296-015-3319-9 PubMedCrossRefGoogle Scholar
  108. Omar OM et al (2011) The stimulation of an osteogenic response by classical monocyte activation. Biomaterials 32:8190–8204.  https://doi.org/10.1016/j.biomaterials.2011.07.055 PubMedCrossRefGoogle Scholar
  109. Osta B, Benedetti G, Miossec P (2014) Classical and paradoxical effects of TNF-alpha on bone homeostasis. Front Immunol 5:48.  https://doi.org/10.3389/fimmu.2014.00048 PubMedPubMedCentralGoogle Scholar
  110. Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28:454–467.  https://doi.org/10.1016/j.immuni.2008.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Phillips AM (2005) Overview of the fracture healing cascade. Injury 36(Suppl 3):S5–S7  https://doi.org/10.1016/j.injury.2005.07.027 PubMedCrossRefGoogle Scholar
  112. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  113. Pratap J et al (2008) Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res 68:7795–7802.  https://doi.org/10.1158/0008-5472.CAN-08-1078 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Redlich K, Smolen JS (2012) Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 11:234–250.  https://doi.org/10.1038/nrd3669 PubMedCrossRefGoogle Scholar
  115. Reinke S et al (2013) Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med 5:177ra136.  https://doi.org/10.1126/scitranslmed.3004754 CrossRefGoogle Scholar
  116. Ren G et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150.  https://doi.org/10.1016/j.stem.2007.11.014 PubMedCrossRefGoogle Scholar
  117. Sasaki H, Hou L, Belani A, Wang CY, Uchiyama T, Muller R, Stashenko P (2000) IL-10, but not IL-4, suppresses infection-stimulated bone resorption in vivo. J Immunol 165:3626–3630PubMedCrossRefGoogle Scholar
  118. Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466.  https://doi.org/10.1016/j.semcdb.2008.07.004 PubMedCrossRefGoogle Scholar
  119. Shukla P, Mansoori MN, Kakaji M, Shukla M, Gupta SK, Singh D (2017) Interleukin 27 (IL-27) alleviates bone loss in estrogen-deficient conditions by induction of early growth response-2. Gene J Biol Chem 292:4686–4699.  https://doi.org/10.1074/jbc.M116.764779 PubMedCrossRefGoogle Scholar
  120. Simpson DM, Ross R (1972) The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Invest 51:2009–2023.  https://doi.org/10.1172/JCI107007 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Soderstrom K et al (2010) Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci USA 107:13028–13033.  https://doi.org/10.1073/pnas.1000546107 PubMedCrossRefGoogle Scholar
  122. Sonomoto K et al (2012) Interleukin-1beta induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum 64:3355–3363.  https://doi.org/10.1002/art.34555 PubMedCrossRefGoogle Scholar
  123. Spaggiari GM, Moretta L (2013) Interactions between mesenchymal stem cells and dendritic cells. Adv Biochem Eng Biotechnol 130:199–208.  https://doi.org/10.1007/10_2012_154 PubMedGoogle Scholar
  124. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490.  https://doi.org/10.1182/blood-2005-07-2775 PubMedCrossRefGoogle Scholar
  125. Sugatani T, Hildreth BE 3rd, Toribio RE, Malluche HH, Hruska KA (2014) Expression of DGCR8-dependent microRNAs is indispensable for osteoclastic development and bone-resorbing activity. J Cell Biochem 115:1043–1047.  https://doi.org/10.1002/jcb.24759 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Tabera S et al (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93:1301–1309.  https://doi.org/10.3324/haematol.12857 PubMedCrossRefGoogle Scholar
  127. Takada I et al (2007) A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol 9:1273–1285.  https://doi.org/10.1038/ncb1647 PubMedCrossRefGoogle Scholar
  128. Teruel T, Valverde AM, Benito M, Lorenzo M (1996) Insulin-like growth factor I and insulin induce adipogenic-related gene expression in fetal brown adipocyte primary cultures. Biochem J 319(Pt 2):627–632PubMedPubMedCentralCrossRefGoogle Scholar
  129. Titanji K et al (2014) Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog 10:e1004497.  https://doi.org/10.1371/journal.ppat.1004497 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Toben D et al (2011) Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res 26:113–124.  https://doi.org/10.1002/jbmr.185 PubMedCrossRefGoogle Scholar
  131. Tu B, Liu S, Liu G, Yan W, Wang Y, Li Z, Fan C (2015) Macrophages derived from THP-1 promote the osteogenic differentiation of mesenchymal stem cells through the IL-23/IL-23R/beta-catenin pathway. Exp Cell Res 339:81–89.  https://doi.org/10.1016/j.yexcr.2015.10.015 PubMedCrossRefGoogle Scholar
  132. Ugarte F, Ryser M, Thieme S, Fierro FA, Navratiel K, Bornhauser M, Brenner S (2009) Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp Hematol 37:867–875.  https://doi.org/10.1016/j.exphem.2009.03.007 PubMedCrossRefGoogle Scholar
  133. Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71:65–76PubMedCrossRefGoogle Scholar
  134. Wang S et al (2012) Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 8:346–356.  https://doi.org/10.1016/j.scr.2011.12.005 PubMedCrossRefGoogle Scholar
  135. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754.  https://doi.org/10.1038/aps.2013.50 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Weitzmann MN, Cenci S, Haug J, Brown C, DiPersio J, Pacifici R (2000) B lymphocytes inhibit human osteoclastogenesis by secretion of TGFbeta. J Cell Biochem 78:318–324PubMedCrossRefGoogle Scholar
  137. Xiao L, Sobue T, Esliger A, Kronenberg MS, Coffin JD, Doetschman T, Hurley MM (2010) Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone 47:360–370.  https://doi.org/10.1016/j.bone.2010.05.021 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, Kotake S (2007) IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 9:R96.  https://doi.org/10.1186/ar2297 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP (2007) Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41:928–936.  https://doi.org/10.1016/j.bone.2007.07.022 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ylostalo JH, Bartosh TJ, Coble K, Prockop DJ (2012) Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 30:2283–2296.  https://doi.org/10.1002/stem.1191 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zakrzewski JL, van den Brink MR, Hubbell JA (2014) Overcoming immunological barriers in regenerative medicine. Nat Biotechnol 32:786–794.  https://doi.org/10.1038/nbt.2960 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, Zhang J (2007) Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit + cell homing to the infarcted heart. Tissue Eng 13:2063–2071.  https://doi.org/10.1089/ten.2006.0013 PubMedCrossRefGoogle Scholar
  143. Zhou X et al (2010) Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA 107:12919–12924.  https://doi.org/10.1073/pnas.0912855107 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zwerina J et al (2007) TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci USA 104:11742–11747.  https://doi.org/10.1073/pnas.0610812104 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of StomatologyShandong UniversityJinanChina

Personalised recommendations