Region-specific changes in brain kisspeptin receptor expression during estrogen depletion and the estrous cycle

  • Saeko Ozaki
  • Shimpei Higo
  • Kinuyo Iwata
  • Hidehisa Saeki
  • Hitoshi OzawaEmail author
Original Paper


Kisspeptin acts as a potent neuropeptide regulator of reproduction through modulation of the hypothalamic–pituitary–gonadal axis. Previous studies revealed sex differences in brain expression patterns as well as regulation of expression by estrogen. Alternatively, sex differences and estrogen regulation of the kisspeptin receptor (encoded by Kiss1r) have not been examined at cellular resolution. In the current study, we examined whether Kiss1r mRNA expression also exhibits estrogen sensitivity and sex-dependent differences using in situ hybridization. We compared Kiss1r mRNA expression between ovariectomized (OVX) rats and estradiol (E2)-replenished OVX rats to examine estrogen sensitivity, and compared expression between gonadally intact male rats and female rats in diestrus or proestrus to examine sex differences. In OVX rats, E2 replenishment significantly reduced Kiss1r expression specifically in the hypothalamic arcuate nucleus (ARC). A difference in Kiss1r expression was also observed between diestrus and proestrus rats in the hypothalamic paraventricular nucleus (PVN), but not in the ARC. Thus, estrogen appears to have region- and context-specific effects on Kiss1r expression. However, immunostaining revealed minimal colocalization of estrogen receptor alpha (ERα) in Kiss1r-expressing neuronal populations of ARC and PVN, indicating indirect or ERα-independent regulation of Kiss1r expression. Surprisingly, unlike the kisspeptin ligand, no sexual dimorphisms were observed in either the brain distribution of Kiss1r expression or in the number of Kiss1r-expressing neurons within enriched brain nuclei. The current study reveals marked differences in regulation between kisspeptin and kisspeptin receptor, and provides an essential foundation for further study of kisspeptin signaling and function in reproduction.


Kisspeptin receptor GPR54 Sex difference Estrogen sensitivity 



We are grateful to Dr. M.K. Park (University of Tokyo, Tokyo, Japan) for providing anti-GnRH monoclonal antibody (LRH13). The present study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research, Grant Number 15K20062 to SH, 18K06860 to HO).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

418_2018_1767_MOESM1_ESM.tif (8.6 mb)
Supplementary material 1 (TIF 8813 KB)
418_2018_1767_MOESM2_ESM.tif (66.9 mb)
Supplementary material 2 (TIF 68520 KB)
418_2018_1767_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 14 KB)


  1. Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda K (2007) Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 53:367–378CrossRefGoogle Scholar
  2. Bollig-Fischer A, Thakur A, Sun Y, Wu J, Liao DJ (2012) The predominant proteins that react to the MC-20 estrogen receptor alpha antibody differ in molecular weight between the mammary gland and uterus in the mouse and rat. Int J Biomed Sci 8:51–63Google Scholar
  3. Caldwell JD, Prange AJ, Pedersen CA (1986) Oxytocin facilitates the sexual receptivity of estrogen-treated female rats. Neuropeptides 7:175–189CrossRefGoogle Scholar
  4. Chan YM, Broder-Fingert S, Wong KM, Seminara SB (2009) Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice. J Neuroendocrinol 21:1015–1023CrossRefGoogle Scholar
  5. Clarke H, Dhillo WS, Jayasena CN (2015) Comprehensive review on Kisspeptin and its role in reproductive disorders. Endocrinol Metab (Seoul) 30:124–141CrossRefGoogle Scholar
  6. Funes S, Hedrick JA, Vassileva G, Makowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312:1357–1363CrossRefGoogle Scholar
  7. García-Galiano D, Pinilla L, Tena-Sempere M (2012) Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol 24:22–33CrossRefGoogle Scholar
  8. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077CrossRefGoogle Scholar
  9. Herbison AE (2008) Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev 57:277–287CrossRefGoogle Scholar
  10. Higo S, Honda S, Iijima N, Ozawa H (2016) Mapping of Kisspeptin receptor mRNA in the whole rat brain and its Co-Localisation with oxytocin in the paraventricular nucleus. J Neuroendocrinol. Google Scholar
  11. Higo S, Iijima N, Ozawa H (2017) Characterisation of Kiss1r (Gpr54)-expressing neurones in the arcuate nucleus of the female rat hypothalamus. J Neuroendocrinol. Google Scholar
  12. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80:264–272CrossRefGoogle Scholar
  13. Jacobi JS, Martin C, Nava G, Jeziorski MC, Clapp C, Martínez de la Escalera G (2007) 17-Beta-estradiol directly regulates the expression of adrenergic receptors and kisspeptin/GPR54 system in GT1-7 GnRH neurons. Neuroendocrinology 86:260–269CrossRefGoogle Scholar
  14. Kania A, Gugula A, Grabowiecka A, de Ávila C, Blasiak T, Rajfur Z, Lewandowski MH, Hess G, Timofeeva E, Gundlach AL, Blasiak A (2017) Inhibition of oxytocin and vasopressin neuron activity in rat hypothalamic paraventricular nucleus by relaxin-3-RXFP3 signalling. J Physiol 595:3425–3447CrossRefGoogle Scholar
  15. Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, Hoffman GE, Steiner RA, Tena-Sempere M (2007) Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148:1774–1783CrossRefGoogle Scholar
  16. Konishi Y, Koosaka Y, Maruyama R, Imanishi K, Kasahara K, Matsuda A, Akiduki S, Hishida Y, Kurata Y, Shibamoto T, Satomi J, Tanida M (2015) L-Ornithine intake affects sympathetic nerve outflows and reduces body weight and food intake in rats. Brain Res Bull 111:48–52CrossRefGoogle Scholar
  17. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brézillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636CrossRefGoogle Scholar
  18. Lapatto R, Pallais JC, Zhang D, Chan YM, Mahan A, Cerrato F, Le WW, Hoffman GE, Seminara SB (2007) Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148:4927–4936CrossRefGoogle Scholar
  19. Liu X, Herbison AE (2016) Kisspeptin regulation of neuronal activity throughout the central nervous system. Endocrinol Metab (Seoul) 31:193–205CrossRefGoogle Scholar
  20. Martínez de la Escalera G, Clapp C (2001) Regulation of gonadotropin-releasing hormone secretion: insights from GT1 immortal GnRH neurons. Arch Med Res 32:486–498CrossRefGoogle Scholar
  21. Mei H, Walters C, Carter R, Colledge WH (2011) Gpr54−/− mice show more pronounced defects in spermatogenesis than Kiss1−/− mice and improved spermatogenesis with age when exposed to dietary phytoestrogens. Reproduction 141:357–366CrossRefGoogle Scholar
  22. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975CrossRefGoogle Scholar
  23. Navarro VM, Castellano JM, Fernández-Fernández R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145:4565–4574CrossRefGoogle Scholar
  24. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617CrossRefGoogle Scholar
  25. Park MK, Wakabayashi K (1986) Preparation of a monoclonal antibody to common amino acid sequence of LHRH and its application. Endocrinol Jpn 33(2):257–272CrossRefGoogle Scholar
  26. Paxinos G, Watson C, Carrive P, Kirkcaldie M, Ashwell K (2009) Chemoarchitectonic atlas of the rat brain. Academic Press, CambridgeGoogle Scholar
  27. Popa SM, Clifton DK, Steiner RA (2008) The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annu Rev Physiol 70:213–238CrossRefGoogle Scholar
  28. Roy D, Angelini NL, Belsham DD (1999) Estrogen directly respresses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-alpha (ERalpha)- and ERbeta-expressing GT1-7 GnRH neurons. Endocrinology 140:5045–5053CrossRefGoogle Scholar
  29. Scott V, Brown CH (2011) Kisspeptin activation of supraoptic nucleus neurons in vivo. Endocrinology 152:3862–3870CrossRefGoogle Scholar
  30. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627CrossRefGoogle Scholar
  31. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005a) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146:3686–3692CrossRefGoogle Scholar
  32. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA (2005b) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146:2976–2984CrossRefGoogle Scholar
  33. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA (2006) Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 26:6687–6694CrossRefGoogle Scholar
  34. Takumi K, Iijima N, Ozawa H (2011) Developmental changes in the expression of kisspeptin mRNA in rat hypothalamus. J Mol Neurosci 43:138–145CrossRefGoogle Scholar
  35. Tsukamura H, Maeda KI, Yokoyama A (1988) Effect of the suckling stimulus on daily LH surges induced by chronic oestrogen treatment in ovariectomized lactating rats. J Endocrinol 118:311–316CrossRefGoogle Scholar
  36. Wang L, Wang Z, Xia ZJ, Lu Y, Huang HQ, Zhang YJ (2015) CD56-negative extranodal NK/T cell lymphoma should be regarded as a distinct subtype with poor prognosis. Tumour Biol 36:7717–7723CrossRefGoogle Scholar
  37. Weiner RI, Wetsel W, Goldsmith P, Martinez de la Escalera G, Windle J, Padula C, Choi A, Negro-Vilar A, Mellon P (1992) Gonadotropin-releasing hormone neuronal cell lines. Front Neuroendocrinol 13:95–119Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Saeko Ozaki
    • 1
    • 2
  • Shimpei Higo
    • 1
  • Kinuyo Iwata
    • 1
  • Hidehisa Saeki
    • 2
  • Hitoshi Ozawa
    • 1
    Email author
  1. 1.Department of Anatomy and NeurobiologyGraduate School of Medicine, Nippon Medical SchoolTokyoJapan
  2. 2.Department of DermatologyGraduate School of Medicine, Nippon Medical SchoolTokyoJapan

Personalised recommendations