Advertisement

Histochemistry and Cell Biology

, Volume 151, Issue 4, pp 327–341 | Cite as

An update on the Golgi staining technique improving cerebellar cell type specificity

  • N. Czechowska
  • A. van Rienen
  • F. Lang
  • B. Eiberger
  • S. L. BaaderEmail author
Original Paper

Abstract

The detailed morphological characterization of single cells was a major breakthrough in neuroscience during the turn of the twentieth century, enabling Ramon y Cajal to postulate the neuron doctrine. Even after 150 years, single cell analysis is an intriguing goal, newly motivated by the finding that autism might be caused by intricate and discreet changes in cerebellar morphology. Besides new single labelling technologies, the Golgi staining technique is still in use due to its whole cell labelling characteristics, its superior contrast performance over other methods and its apparent randomness of staining cells within a whole tissue block. However, the specificity and whole cell labelling of Golgi staining are also disputed controversially, and the method still has a poor reputation for being time consuming and needing high expenditures. We demonstrate here, how a classical Golgi technique can be adapted for staining different cerebellar cell types using a time-saving and efficient protocol, enabling the identification of the detailed morphological characteristics of single cells.

Keywords

Golgi staining Cerebellum Purkinje cells Granule cells Bergmann glia Dendritic spines 

Notes

Acknowledgements

The authors are very grateful to Stefanie Ramrath and Sabine Molly-Klumbies for their excellent technical help, and Daniela Krauss and Narziss Haias for providing animal husbandry. This work was supported by the Deutsche Forschungsgemeinschaft, Grant GZ: INST1172/37-1FUGG (to SLB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest, commercial or non-commercial. All applicable international, national and/or institutional guidelines for the care and use of animals were followed (see “Materials and methods” section for details). This article does not contain any studies with human participants performed by any of the authors.

References

  1. Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc 44(2):139–177Google Scholar
  2. Angulo A, Merchan JA, Molina M (1994) Golgi–Colonnier method: correlation of the degree of chromium reduction and pH change with quality of staining. J Histochem Cytochem 42(3):393–403Google Scholar
  3. Angulo A, Fernández E, Merchan JA, Molina M (1996) A reliable method for Golgi staining of retina and brain slices. J Neurosci Methods 66(1):55–59Google Scholar
  4. Berbel PJ (1986) Chromation at low temperatures improves impregnation of neurons in Golgi-aldehyde methods. J Neurosci 17(4):255–259Google Scholar
  5. Bertram EG, Ihrig HK (1957) Improvement of the Golgi method by pH control. Stain Technol 32(2):87–94Google Scholar
  6. Blackstad TW, Osen KK, Mugnaini E (1984) Pyramidal neurones of the dorsal cochlear nucleus: a Golgi and computer reconstruction study in cat. Neuroscience 13(3):827–854Google Scholar
  7. Bolton JS (1898) On the chrome-silver impregnation of formalin-hardened brain. Lancet 151(3882):218–219Google Scholar
  8. Braitenberg V, Guglielmotti V, Sada E (1967) Correlation of crystal growth with the staining of axons by the Golgi procedure. Stain Technol 42(6):277–283Google Scholar
  9. Colonnier M (1964) The tangential organization of the visual cortex. J Anat 98:327–344Google Scholar
  10. Cox WH (1891) Imprägnation des centralen Nervensystems mit Quecksilbersalzen. Arch Mikrosk Anat 37(1):16–21Google Scholar
  11. Drekic D, Malobabic SP (1987) A simple modification of the Golgi method. Acta Vet 37(1):33–40Google Scholar
  12. Dröscher A (1998) Camillo Golgi and the discovery of the Golgi apparatus. Histochem Cell Biol 109(5–6):425–430Google Scholar
  13. Elias PM, Park HD, Patterson AE, Lutzner MA, Wetzel BK (1972) Osmium tetroxide–zinc iodide staining of Golgi elements and surface coats of hydras. J Ultrastruct Res 40(1–2):87–102Google Scholar
  14. Fox CA, Ubeda-Purkiss M, Ihrig K, Biagioli D (1951) Zinc chromate modification of the Golgi technic. Stain Technol 26(2):109–114Google Scholar
  15. Fregerslev S, Blackstad TW, Fredens K, Holm MJ (1971) Golgi potassium-dichromate silver-nitrate impregnation. Nature of the precipitate studied by X-ray powder diffraction methods. Histochemie 25(1):63–71Google Scholar
  16. Friedland DR, Los JG, Ryugo DK (2006) A modified Golgi staining protocol for use in the human brain stem and cerebellum. J Neurosci Methods 150(1):90–95Google Scholar
  17. García-López P, García-Marín V, Freire M (2007) The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Prog Neurobiol 83(2):110–130Google Scholar
  18. Glaser EM, van der Loos H (1981) Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi–Nissl stain. J Neurosci Methods 4(2):117–125Google Scholar
  19. Golgi C (1873) Sulla struttura della sostanza grigia del cervello. Gazz Med Ital 33:244–246Google Scholar
  20. Gonzalez-Burgos I, Tapia-Arizmendi G, Feria-Velasco A (1992) Golgi method without osmium tetroxide for the study of the central nervous system. Biotech Histochem 67(5):288–296Google Scholar
  21. Hendelman WJ, Aggerwal AS (1980) The Purkinje neuron: I. A Golgi study of its development in the mouse and in culture. J Comp Neurol 193(4):1063–1079Google Scholar
  22. Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103(1):171–187Google Scholar
  23. Hoyer H (1894) Ueber die Anwendung des Formaldehyds in der histologischen Technik. Anat Anz 9:236–238Google Scholar
  24. Kaemmerer WF, Reddy RG, Warlick CA, Hartung SD, McIvor RS, Low WC (2000) In vivo transduction of cerebellar Purkinje cells using adeno-associated virus vectors. Mol Ther 2(5):446–457Google Scholar
  25. Kato T, Hirano A (1985) A Golgi study of the proximal portion of the human Purkinje cell axon. Acta Neuropathol 68(3):191–195Google Scholar
  26. Knight E, Anton ED, Fahey D, Friedland BK, Jonak GJ (1985) Interferon regulates c-myc gene expression in Daudi cells at the post-transscriptional level. Proc Natl Acad Sci USA 82:1151–1154Google Scholar
  27. Kopsch F (1896) Erfahrungen über die Verwendung des Formaldehyds bei der Chromsilber-Imprägnation. Anat Anz 11:727–729Google Scholar
  28. Koyama Y (2013) The unending fascination with the Golgi method. OA Anat 1(3):24:1–8Google Scholar
  29. Lee VW-M, Li H, Lau T-C, Guevremont R, Michael Siu KW (1998) Relative silver(I) ion binding energies of α-amino acids. A determination by means of the kinetic method. J Am Soc Mass Spectrom Chem 9(8):760–766Google Scholar
  30. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62Google Scholar
  31. Lo DC, McAllister AK, Katz LC (1994) Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13(6):1263–1268Google Scholar
  32. Maltecca F, Aghaie A, Schroeder DG, Cassina L, Taylor BA, Phillips SJ, Malaguti M, Previtali S, Guenet JL, Quattrini A, Cox GA, Casari G (2008) The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci 28(11):2827–2836Google Scholar
  33. Marani E, Guldemond JM, Adriolo PJ, Boon ME, Kok LP (1987) The microwave Rio-Hortega technique: a 24 hour method. Histochem J 19(12):658–664Google Scholar
  34. Milatovic D, Montine TJ, Zaja-Milatovic S, Madison JL, Bowman AB, Aschner M (2010) Morphometric analysis in neurodegenerative disorders. Curr Protoc Toxicol 12:12.16Google Scholar
  35. Morest DK, Morest RR (1966) Perfusion-fixation of the brain with chrome-osmium solutions for the rapid Golgi method. Am J Anat 118(3):811–831Google Scholar
  36. Mulisch M, Welsch U (2010) Romeis Histologische Technik. Spektrum Akademischer, FrankfurtGoogle Scholar
  37. Mulisch M, Welsch U (eds) (2015) Romeis—Mikroskopische Technik. Springer, BerlinGoogle Scholar
  38. Pannese E (1996) The black reaction. Brain Res Bull 41(6):343–349Google Scholar
  39. Pasternak JF, Woolsey TA (1975) On the “selectivity” of the Golgi–Cox method. J Comp Neurol 160(3):307–312Google Scholar
  40. Patro N, Kumar K, Patro I (2013) Quick Golgi method: modified for high clarity and better neuronal anatomy. Indian J Exp Biol 51(9):685–693Google Scholar
  41. Pilati N, Barker M, Panteleimonitis S, Donga R, Hamann M (2008) A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 56(6):539–550Google Scholar
  42. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Ramón y Cajal S (1999) Texture of the nervous system of man and the vertebrates. Volume I: An annotated and edited translation of the original Spanish text with the additions of the French version by Pedro Pasik and Tauba Pasik. Springer, ViennaGoogle Scholar
  44. Ramón y Cajal S, Castro F de (1933) Elementos de técnica micrográfica del sistema nervioso. Tipografía Artística, MadridGoogle Scholar
  45. Ramón y Cajal S (1888) Estructura de los centros nerviosos de las aves. Rev Trim Histol Norm Pat 1:1–10Google Scholar
  46. Ranjan A, Mallick BN (2010) A modified method for consistent and reliable Golgi–Cox staining in significantly reduced time. Front Neurol 1(157):1–8Google Scholar
  47. Ranjan A, Mallick BN (2012) Differential staining of glia and neurons by modified Golgi–Cox method. J Neurosci Meth 209(2):269–279Google Scholar
  48. Riley JN (1979) A reliable Golgi–Kopsch modification. Brain Res Bull 4(1):127–129Google Scholar
  49. Rosoklija G, Mancevski B, Ilievski B, Perera T, Lisanby SH, Coplan JD, Duma A, Serafimova T, Dwork AJ (2003) Optimization of Golgi methods for impregnation of brain tissue from humans and monkeys. J Neurosci Methods 131(1–2):1–7Google Scholar
  50. Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol 156:115–152Google Scholar
  51. Shiga T, Ichikawa M, Hirata Y (1983) A Golgi study of Bergmann glial cells in developing rat cerebellum. Anat Embryol 167(2):191–201Google Scholar
  52. Spacek J (1985) Three-dimensional analysis of dendritic spines. Anat Embryol 171:235–243Google Scholar
  53. Spacek J (1992) Dynamics of golgi impregnation in neurons. Microsc Res Tech 23(4):264–274Google Scholar
  54. Stefanović BD, Ristanovic D, Trpinac D, Đordević-Čamba V, Lačković V, Bumbaširević V, Obradović M, Bašic R, Ćetković M (1998) The acidophilic nature of neuronal Golgi impregnation. Acta Histochem 100(2):217–227Google Scholar
  55. Takayama K, Torashima T, Horiuchi H, Hirai H (2008) Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neurosci Lett 443(1):7–11Google Scholar
  56. Tokuno H, Nakamura Y, Kudo M, Kitao Y (1990) Effect of Triton X-100 in the Golgi–Kopsch method. J Neurosci Meth 35(1):75–77Google Scholar
  57. van den Pol AN, Ghosh PK (1998) Selective neuronal expression of green fluorescent protein with cytomegalovirus promoter reveals entire neuronal arbor in transgenic mice. J Neurosci 18(24):10640–10651Google Scholar
  58. Yuste R (2015) The discovery of dendritic spines by Cajal. Front Neuroanat 9:18Google Scholar
  59. Zaqout S, Kaindl AM (2016) Golgi–Cox staining step by step. Front Neuroanat 10:55Google Scholar
  60. Zhang H, Weng SJ, Hutsler JJ (2003) Does microwaving enhance the Golgi methods? A quantitative analysis of disparate staining patterns in the cerebral cortex. J Neurosci Methods 124(2):145–155Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Anatomy, Anatomy and Cell BiologyUniversity of BonnBonnGermany

Personalised recommendations