Paraoxonase 1 (PON1) promoter (−107T/C) and coding region (192Q/R and 55L/M) genetic variations in pseudoexfoliation syndrome and pseudoexfoliative glaucoma risk

  • Birsen Can DemirdöğenEmail author
  • Canan Koçan Akçin
  • Ezgi Göksoy
  • Gizem Yakar
  • Tuğçe Öztepe
  • Sinem Demirkaya-Budak
  • Sinan Oflaz



Pseudoexfoliation syndrome (PEX) is characterized by the accumulation of microscopic extracellular material in the anterior chamber of the eye and can lead to the development of pseudoexfoliative glaucoma (PEG) in some patients. The pathogenesis of PEX is not fully understood, and there are no objective biomarkers for its early diagnosis. Recent research has indicated that oxidative stress and inflammation might play a role in the pathophysiology of the production of pseudoexfoliation material. Therefore, in the present study, we aimed to analyze the possible association between three genetic variants of paraoxonase 1 (PON1), a well-recognized antioxidant and anti-inflammatory enzyme, and PEX/PEG.


The study population consisted of patients with PEX (n = 150), patients with PEG (n = 150), and control subjects (n = 150). PON1 −107T/C, 192Q/R, and 55L/M genotypes were determined using PCR followed by restriction fragment length polymorphism analysis. The correlation between these genetic alterations and clinical visual characteristics was also investigated.


The minor allele frequencies and genotype distributions of PON1 did not differ significantly between the PEG, PEX, and control groups. Moreover, PON1 genotypes did not significantly influence visual clinical parameters in stratification analysis. On the other hand, in correlation analysis, pattern standard deviation was significantly correlated with the −107T/C genotypes in PEX group. In addition, intraocular pressure was correlated with the 55L/M genotypes and mean deviation was correlated with the −107T/C genotypes in the control group. Furthermore, intraocular pressure was significantly inversely correlated with sex (r =  − 0.116, P = 0.011) in the overall study group. Logistic regression analysis showed that having a PON1 −107TC or CC genotype is significantly associated with PEX (OR = 1.909, P = 0.020).


This study, for the first time, analyzed the relationship between PON1 genetic variants, clinical visual parameters, and PEX/PEG. The results indicated a possible role for the PON1 promoter variant in PEX.


IOP Mean deviation Pattern standard deviation Polymorphism Visual field score 



Deoxyribonucleic acid


Intraocular pressure


Mean deviation


Polymerase chain reaction


Pseudoexfoliation syndrome


Pseudoexfoliative glaucoma


Paraoxonase 1


Pattern standard deviation


Restriction fragment length polymorphism


Visual field score



The authors thank the subjects for their participation in this study, and Dr. Tarkan Mumcuoğlu and Dr. Gökhan Özge for sample collection.


This study was supported by a research grant from TUBITAK 315S190.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.


  1. 1.
    Elhawy E, Kamthan G, Dong CQ, Danias J (2012) Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics 6:22. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Colin J, Gall GL, Jeune BL, Cambrai MD (1988) The prevalence of exfoliation syndrome in different areas of France. Acta Ophthalmol Suppl 184:86–89. CrossRefPubMedGoogle Scholar
  3. 3.
    Grødum K, Heijl A, Bengtsson B (2005) Risk of glaucoma in ocular hypertension with and without pseudoexfoliation. Ophthalmology 112(3):386–390. CrossRefPubMedGoogle Scholar
  4. 4.
    Jeng SM, Karger RA, Hodge DO, Burke JP, Johnson DH, Good MS (2007) The risk of glaucoma in pseudoexfoliation syndrome. J Glaucoma 16(1):117–121. CrossRefPubMedGoogle Scholar
  5. 5.
    Koliakos GG, Konstas AGP, Schlotzer-Schrehardt U, Bufidis T, Georgiadis N, Ringvold A (2002) Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome. Am J Ophthalmol 134:879–883. CrossRefPubMedGoogle Scholar
  6. 6.
    Funatsu H, Yamashita H, Ikeda T, Mimura T, Eguchi S, Hori S (2003) Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 110(9):1690–1696. CrossRefPubMedGoogle Scholar
  7. 7.
    Yilmaz A, Adiguzel U, Tamer L, Yildirim O, Oz O, Vatansever H, Ercan B, Değirmenci US, Atik U (2005) Serum oxidant/antioxidant balance in exfoliation syndrome. Clin Exp Ophthalmol 33:63–66. CrossRefGoogle Scholar
  8. 8.
    Gartaganis SP, Patsoukis NE, Nikolopoulos DK, Georgiou CD (2007) Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye (Lond) 21(11):1406–1411. CrossRefGoogle Scholar
  9. 9.
    Koliakos GG, Befani CD, Mikropoulos D, Ziakas NG, Konstas AG (2008) Prooxidant-antioxidant balance, peroxide and catalase activity in the aqueous humour and serum of patients with exfoliation syndrome or exfoliative glaucoma. Graefes Arch Clin Exp Ophthalmol 246(10):1477–1483. CrossRefPubMedGoogle Scholar
  10. 10.
    Yağci R, Gürel A, Ersöz I, Karadağ R, Hepşen IF, Duman S (2009) The activities of paraoxonase, xanthine oxidase, adenosine deaminase and the level of nitrite in pseudoexfoliation syndrome. Ophthalmic Res 42(3):155–159. CrossRefPubMedGoogle Scholar
  11. 11.
    Yildirim Z, Yildirim F, Uçgun NI, Sepici-Dinçel A (2013) The role of the cytokines in the pathogenesis of pseudoexfoliation syndrome. Int J Ophthalmol 6(1):50–53. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Can Demirdöğen B, Ceylan OM, Işıkoğlu S, Mumcuoğlu T, Erel Ö (2014) Evaluation of oxidative stress and paraoxonase phenotypes in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Clin Lab 60(1):79–86. CrossRefGoogle Scholar
  13. 13.
    Dursun F, Ozec AV, Aydin H, Topalkara A, Dursun A, Toker MI, Erdogan H, Arici MK (2015) Total oxidative stress, paraoxonase and arylesterase levels at patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Int J Ophthalmol 8(5):985–990. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sarenac-Vulovic TS, Pavlovic SM, Jakovljevic VLJ, Janicijevic KB, Zdravkovic NS (2016a) Nitric oxide and tumour necrosis factor alpha in the process of pseudoexfoliation glaucoma. Int J Ophthalmol 9(8):1138–1142. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sarenac-Vulovic TS, Pavlovic SM, Zdravkovic NS (2016b) Proinflammatory cytokines induce XFG development. Ocul Immunol Inflamm 24(6):671–677. CrossRefPubMedGoogle Scholar
  16. 16.
    Chowdhury UR, Madden BJ, Charlesworth MC, Fautsch MP (2010) Proteome Analysis of Human Aqueous Humor. Invest Ophthalmol Vis Sci 51(10):4921–4931. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR, Beuerman RW (2012) In-depth analysis of the human tear proteome. J Proteome 75(13):3877–3885. CrossRefGoogle Scholar
  18. 18.
    Mackness B, Mackness M (2010) Anti-inflammatory properties of paraoxonase-1 in atherosclerosis. Adv Exp Med Biol 660:143–151. CrossRefPubMedGoogle Scholar
  19. 19.
    Aharoni S, Aviram M, Fuhrman B (2013) Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis 228(2):353–361. CrossRefPubMedGoogle Scholar
  20. 20.
    Deakin SP, James RW (2004) Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clin Sci (Lond) 107(5):435–447. CrossRefGoogle Scholar
  21. 21.
    Garin MC, James RW, Dussoix P, Blanché H, Passa P, Froguel P, Ruiz J (1997) Paraoxonase polymorphism Met-Leu 54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Invest 99:62–66. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brophy VH, Jampsa RL, Clendenning JB, McKinstry LA, Jarvik GP, Furlong CE (2001) Effects of 5′ regulatory-region polymorphisms on paraoxonase gene (PON1) expression. Am J Hum Genet 68:1428–1436. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Debord J, Dantoine T, Bollinger JC, Abraham MH, Verneuil B, Merle L (1998) Inhibition of arylesterase by aliphatic alcohols. Chem Biol Interact 113:105–115. CrossRefPubMedGoogle Scholar
  24. 24.
    James RW, Leviev I, Righetti A (2000) Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation 101:2252–2257. CrossRefPubMedGoogle Scholar
  25. 25.
    Tomás M, Sentí M, Elosua R, Vila J, Sala J, Masià R, Marrugat J (2001) Interaction between the Gln-Arg 192 variants of the paraoxonase gene and oleic acid intake as a determinant of high-density lipoprotein cholesterol and paraoxonase activity. Eur J Pharmacol 432(2-3):121–128. CrossRefPubMedGoogle Scholar
  26. 26.
    Rao MN, Marmillot P, Gong M, Palmer DA, Seeff LB, Strader DB, Lakshman MR (2003) Light, but not heavy alcohol drinking, stimulates paraoxonase by upregulating liver mRNA in rats and humans. Metabolism 52:1287–1294. CrossRefPubMedGoogle Scholar
  27. 27.
    Aviram M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A, Dornfeld L, Volkova N, Presser D, Attias J, Liker H, Hayek T (2004) Pomegranate juice consumption for 3 years by patients with carotid artery stenosis (CAS) reduces common carotid intima-media thickness (IMT), blood pressure and LDL oxidation. Clin Nutr 23:423–433. CrossRefPubMedGoogle Scholar
  28. 28.
    Mackness M, Mackness B (2015) Human paraoxonase-1 (PON1): gene structure and expression, promiscuous activities and multiple physiological roles. Gene 567:12–21. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ritch R, Schlötzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45(4):265–315. CrossRefPubMedGoogle Scholar
  30. 30.
    Ceylan OM, Can Demirdöğen B, Mumcuoğlu T, Aykut O (2013) Evaluation of essential and toxic trace elements in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Biol Trace Elem Res 153(1-3):28–34. CrossRefPubMedGoogle Scholar
  31. 31.
    The Advanced Glaucoma Intervention Study Investigators (1994) Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. Ophthalmology 101:1445–1455. CrossRefGoogle Scholar
  32. 32.
    Lahiri DK, Schnabel B (1993) DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem Genet 31(7-8):321–328. CrossRefPubMedGoogle Scholar
  33. 33.
    Can Demirdöğen B, Türkanoğlu A, Bek S, Sanisoğlu Y, Demirkaya Ş, Vural O, Arınç E, Adalı O (2008) Paraoxonase/arylesterase ratio, PON1 192Q/R polymorphism and PON1 status are associated with increased risk of ischemic stroke. Clin Biochem 41(1-2):1–9. CrossRefPubMedGoogle Scholar
  34. 34.
    Can Demirdöğen B, Demirkaya Ş, Türkanoğlu A, Bek S, Arınç E, Adalı O (2009) Analysis of paraoxonase 1 (PON1) genetic polymorphisms and activities as risk factors for ischemic stroke in Turkish population. Cell Biochem Funct 27(8):558–567. CrossRefGoogle Scholar
  35. 35.
    Campo S, Sardo MA, Trimarchi G, Bonaiuto M, Fontana L, Castaldo M, Bonaiuto A, Saitta C, Bitto A, Manduca B, Riggio S, Saitta A (2004) Association between serum paraoxonase (PON1) gene promoter T(−107)C polymorphism, PON1 activity and HDL levels in healthy Sicilian octogenarians. Exp Gerontol 39:1089–1094. CrossRefPubMedGoogle Scholar
  36. 36.
    Conover WJ (1980) Chapter 5 Some methods based on ranks, Section 5.2 Several independent samples.In: Conover WJ (ed) Practical nonparametric statistics, 2nd edn. John Wiley & Sons, New York, pp 229–239Google Scholar
  37. 37.
  38. 38.
    Majka CP, Challa P (2006) Diagnosis and Management of Pseudoexfoliation Glaucoma. EyeNet Magazine. Accessed 10 Jan 2019.Google Scholar
  39. 39.
    Brissette AR, Schweitzer K, Campbell RJ (2011) Answer: can you identify this condition? Can Fam Physician 57(6):687–688PubMedCentralGoogle Scholar
  40. 40.
    Camps J, García-Heredia A, Rull A, Alonso-Villaverde C, Aragonès G, Beltrán-Debón R, Rodríguez-Gallego E, Joven J (2012) PPARs in regulation of paraoxonases: control of oxidative stress and inflammation pathways. PPAR Res 2012:616371. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mackness B, Mackness MI, Arrol S, Turkie W, Julier K, Abuasha B, Miller JE, Boulton AJ, Durrington PN (1998) Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis 139:341–349. CrossRefPubMedGoogle Scholar
  42. 42.
    McElveen J, Mackness MI, Colley CM, Peard T, Warner S, Walker CH (1986) Distribution of paraoxon hydrolytic activity in the serum of patients after myocardial infarction. Clin Chem 32:671–673PubMedGoogle Scholar
  43. 43.
    Jarvik GP, Rozek LS, Brophy VH, Hatsukami TS, Richter RJ, Schellenberg GD, Furlong CE (2000) Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1 (192) or PON1 (55) genotype. Arterioscler Thromb Vasc Biol 20:2441–2447. CrossRefPubMedGoogle Scholar
  44. 44.
    Andrikopoulos GK, Alexopoulos DK, Gartaganis SP (2014) Pseudoexfoliation syndrome and cardiovascular diseases. World J Cardiol 6(8):847–854. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Liton PB, Luna C, Challa P, Epstein DL, Gonzalez P (2006) Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue. Mol Vis 12:774–790PubMedPubMedCentralGoogle Scholar
  46. 46.
    Joe MK, Tomarev SI (2010) Expression of myocilin mutants sensitizes cells to oxidative stress-induced apoptosis: implication for glaucoma pathogenesis. Am J Pathol 176(6):2880–2890. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mumcu UY, Kocer I, Ates O, Alp HH (2016) Decreased paraoxonase1 activity and increased malondialdehyde and oxidative DNA damage levels in primary open angle glaucoma. Int J Ophthalmol 9(10):1518–1520. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yilmaz N, Coban DT, Bayindir A, Erol MK, Ellidag HY, Giray O, Sayrac S, Tekeli SO, Eren E (2016) Higher serum lipids and oxidative stress in patients with normal tension glaucoma, but not pseudoexfoliative glaucoma. Bosn J Basic Med Sci 16(1):21–27. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Aviram M, Billecke S, Sorenson R, Bisgaier C, Newton R, Rosenblat M, Erogul J, Hsu C, Dunlop C, La Du B (1998) Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase alloenzymes Q and R. Arterioscler Thromb Vasc Biol 10:1617–1624. CrossRefGoogle Scholar
  50. 50.
    Zech R, Zurcher K (1974) Organophosphate splitting serum enzymes in different mammals. Comp Biochem Physiol 48:427–433CrossRefGoogle Scholar
  51. 51.
    Playfer JR, Eze LC, Bullen MF, Evans DA (1976) Genetic polymorphism and interethnic variability of plasma paraoxonase activity. J Med Genet 13:337–342CrossRefGoogle Scholar
  52. 52.
    Furlong CE, Richter RJ, Seidel SL, Motulsky AG (1988) Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 43:230–238PubMedPubMedCentralGoogle Scholar
  53. 53.
    Eckerson HW, White CM, La Du BN (1983) The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet 35:1126–1138PubMedPubMedCentralGoogle Scholar
  54. 54.
    Aviram M (2003) Dietary antioxidants stimulate the expression of paraoxonases which provides protection against atherosclerosis development. Curr Top Nutraceutical Res 3:161–169Google Scholar
  55. 55.
    Brophy VH, Jarvik GP, Furlong CE (2002) PON1 polymorphisms. In: Costa LG, Furlong CE (eds) Paraoxonase (PON1) in health and disease: basic and clinical aspects. Kluwer Acad, Norwell, pp 53–77CrossRefGoogle Scholar
  56. 56.
    Hioki T, Fukami T, Nakajima M, Yokoi T (2011) Human paraoxonase 1 is the enzyme responsible for pilocarpine hydrolysis. Drug Metab Dispos 39(8):1345–1352. CrossRefPubMedGoogle Scholar
  57. 57.
    Zhou G, Liu B (2010) Single nucleotide polymorphisms of metabolic syndrome-related genes in primary open angle glaucoma. Int J Ophthalmol 3(1):36–42. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Inagaki Y, Mashima Y, Funayama T, Ohtake Y, Fuse N, Yasuda N, Fukuchi T, Murakami A, Hotta Y (2006) Paraoxonase 1 gene polymorphisms influence clinical features of open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 244(8):984–990. CrossRefPubMedGoogle Scholar
  59. 59.
    Schlötzer-Schrehardt UM, Koca MR, Naumann GO, Volkholz H (1992) Pseudoexfoliation syndrome. Ocular manifestation of a systemic disorder? Arch Ophthalmol 110(12):1752–1756. CrossRefPubMedGoogle Scholar
  60. 60.
    Mitchell P, Wang JJ, Smith W (1997) Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol 124(5):685–687. CrossRefPubMedGoogle Scholar
  61. 61.
    Citirik M, Acaroglu G, Batman C, Yildiran L, Zilelioglu O (2007) A possible link between the pseudoexfoliation syndrome and coronary artery disease. Eye (Lond) 21(1):11–15. CrossRefGoogle Scholar
  62. 62.
    Andrikopoulos GK, Mela EK, Georgakopoulos CD, Papadopoulos GE, Damelou AN, Alexopoulos DK, Gartaganis SP (2009) Pseudoexfoliation syndrome prevalence in Greek patients with cataract and its association to glaucoma and coronary artery disease. Eye (Lond) 23(2):442–447. CrossRefGoogle Scholar
  63. 63.
    Sekeroglu MA, Bozkurt B, Irkec M, Ustunel S, Orhan M, Saracbasi O (2008) Systemic associations and prevalence of exfoliation syndrome in patients scheduled for cataract surgery. Eur J Ophthalmol 18(4):551–555. CrossRefPubMedGoogle Scholar
  64. 64.
    Demir N, Ulus T, Yucel OE, Kumral ET, Singar E, Tanboga HI (2011) Assessment of myocardial ischaemia using tissue Doppler imaging in pseudoexfoliation syndrome. Eye (Lond) 25(9):1177–1180. CrossRefGoogle Scholar
  65. 65.
    French DD, Margo CE, Harman LE (2012) Ocular pseudoexfoliation and cardiovascular disease: a national cross-section comparison study. N Am J Med Sci 4(10):468–473. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Anastasopoulos E, Topouzis F, Wilson MR, Harris A, Pappas T, Yu F, Koskosas A, Founti P, Coleman AL (2011) Characteristics of pseudoexfoliation in the Thessaloniki Eye Study. J Glaucoma 20(3):160–166. CrossRefPubMedGoogle Scholar
  67. 67.
    Brajković J, Kalauz-Surać I, Ercegović A, Miletić-Jurić A, Sušić N, Burić Z (2007) Ocular pseudoexfoliation syndrome and internal systemic diseases. Acta Clin Croat 46(Supp 1):57–61Google Scholar
  68. 68.
    Allingham RR, Loftsdottir M, Gottfredsdottir MS, Thorgeirsson E, Jonasson F, Sverisson T, Hodge WG, Damji KF, Stefánsson E (2001) Pseudoexfoliation syndrome in Icelandic families. Br J Ophthalmol 85:702–707. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Viso E, Rodríguez-Ares MT, Gude F (2010) Prevalence of pseudoexfoliation syndrome among adult Spanish in the Salnés eye Study. Ophthalmic Epidemiol 17:118–124. CrossRefPubMedGoogle Scholar
  70. 70.
    Praveen MR, Shah SK, Vasavada AR, Diwan RP, Shah SM, Zumkhawala BR, Thomas R (2011) Pseudoexfoliation as a risk factor for peripheral vascular disease: a case-control study. Eye (Lond) 25:174–179. CrossRefGoogle Scholar
  71. 71.
    Spečkauskas M, Tamošiūnas A, Jašinskas V (2012) Association of ocular pseudoexfoliation syndrome with ischaemic heart disease, arterial hypertension and diabetes mellitus. Acta Ophthalmol 90:e470–e475. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Emiroglu MY, Coskun E, Karapinar H, Capkın M, Kaya Z, Kaya H, Akcakoyun M, Kargin R, Simsek Z, Acar G, Aung SM, Pala S, Ozdemir B, Esen AM, Kırma C (2010) Is pseudoexfoliation syndrome associated with coronary artery disease? N Am J Med Sci 2(10):487–490. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTOBB University of Economics and TechnologyAnkaraTurkey

Personalised recommendations