Comparative analysis of biomechanical parameters of the corneas following Descemet membrane endothelial keratoplasty and contralateral healthy corneas

  • Natalya F. ShilovaEmail author
  • Yoav Nahum
  • Avital Adler
  • Irit Bahar
  • Boris E. Malyugin
  • Natalia S. Anisimova
  • Eitan Livny



To compare the biomechanical properties of the unilateral operated corneas in patients who had undergone Descemet membrane endothelial keratoplasty (DMEK) for pseudophakic bullous keratopathy (PBK) with those of the contralateral normal corneas.


This was a retrospective cohort study conducted at university hospitals (Department of Ophthalmology, Rabin Medical Center, Petach Tikva, Israel, and S. Fyodorov Eye Microsurgery State Institution, Moscow, Russia). Forty eyes of 20 patients who underwent DMEK for unilateral PBK 3.5 to 36 months ago and with normal fellow eyes were included in the study. An ocular response analyzer was used to measure the corneal biomechanical properties in the operated and normal fellow eyes. The main outcome measures were corneal hysteresis (CH) and corneal resistance factor (CRF).


The mean CH (8.4 ± 1.5 mmHg vs. 8.2 ± 1.5 mmHg, P = 0.707) and the mean CRF (8.7 ± 1.6 mmHg vs. 8.3 ± 1.6 mmHg, P = 0.419) values did not show any statistically significant difference between the operated and the normal fellow eyes.


In our study, the corneas that underwent DMEK for PBK showed normal values for biomechanical parameters. These findings support the previous studies that have reported near complete visual, functional, and ultra-structural rehabilitation of the corneas following DMEK.


Corneal biomechanics Keratoplasty DMEK Intraocular pressure 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.


  1. 1.
    Price MO, Price FW Jr (2013) Descemet’s membrane endothelial keratoplasty surgery: update on the evidence and hurdles to acceptance. Curr Opin Ophthalmol 24:329–335. CrossRefGoogle Scholar
  2. 2.
    Rodríguez-Calvo-De-Mora M, Quilendrino R, Ham L et al (2015) Clinical outcome of 500 consecutive cases undergoing Descemet’s membrane endothelial keratoplasty. Ophthalmology 122:464–470. CrossRefGoogle Scholar
  3. 3.
    Kruse FE, Weller MJ, TT (2017) Outcomes of DMEK. In: Mannis MJ, Holland EJ (eds) Cornea; Vol 1: Fundamentals, diagnosis and management. 4th ed. Elsevier Mosby, Philadelphia, pp 1486–1487Google Scholar
  4. 4.
    Livny E, Parker JS, van der Kaaij M et al (2014) Postmortem ultrastructural analysis of a cornea transplanted with Descemet membrane endothelial keratoplasty. Cornea 33:790–794. CrossRefGoogle Scholar
  5. 5.
    Lavy I, Liarakos VS, Verdijk RM et al (2017) Outcome and histopathology of secondary penetrating keratoplasty graft failure managed by Descemet membrane endothelial keratoplasty. Cornea 36:777–784. CrossRefGoogle Scholar
  6. 6.
    Reid RA, Craig EA, Suleman H (2015) Descemet’s membrane endothelial keratoplasty (DMEK): first UK prospective study of 1-year visual outcomes, graft survival and endothelial cell count. Br J Ophthalmol 99:166–169. CrossRefGoogle Scholar
  7. 7.
    Tourtas T, Laaser K, Bachmann BO et al (2012) Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty. Am J Ophthalmol 153:1082–1090. CrossRefGoogle Scholar
  8. 8.
    Anshu A, Price MO, Price FW Jr (2012) Risk of corneal transplant rejection significantly reduced with Descemet’s membrane endothelial keratoplasty. Ophthalmology 119:536–540. CrossRefGoogle Scholar
  9. 9.
    van Zyl C, Terry MA (2014) DMEK: the grand prix of cornea transplant surgery. Expert Rev Ophthalmol 9:89–98. CrossRefGoogle Scholar
  10. 10.
    Feizi S, Montahai T, Moein H (2015) Graft biomechanics following three corneal transplantation techniques. J Ophthalmic Vis Res 10:238–242. CrossRefGoogle Scholar
  11. 11.
    Chen MC, Lee N, Bourla N et al (2008) Corneal biomechanical measurements before and after laser in situ keratomileusis. J Cataract Refract Surg 34:1886–1991. CrossRefGoogle Scholar
  12. 12.
    Kamiya K, Shimizu K, Ohmoto F (2009) Comparison of the changes in corneal biomechanical properties after photorefractive keratectomy and laser in situ keratomileusis. Cornea 28:765–769. CrossRefGoogle Scholar
  13. 13.
    Fontes BM, Ambrósio R Jr, Jardim D et al (2010) Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology 117:673–679. CrossRefGoogle Scholar
  14. 14.
    Grise-Dulac A, Saad A, Abitbol O et al (2012) Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J Glaucoma 21:486–489. CrossRefGoogle Scholar
  15. 15.
    Kotecha A (2007) What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol 52:109–114. CrossRefGoogle Scholar
  16. 16.
    Terai N, Raiskup F, Haustein M et al (2012) Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37:553–562. CrossRefGoogle Scholar
  17. 17.
    Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162. CrossRefGoogle Scholar
  18. 18.
    Lam A, Chen D, Chiu R et al (2007) Comparison of IOP measurements between ORA and GAT in normal Chinese. Optom Vis Sci 84:909–914. CrossRefGoogle Scholar
  19. 19.
    Armstrong RA, Eperjesi F, Gilmartin B (2002) The application of analysis of variance (ANOVA) to different experimental designs in optometry. Ophthalmic Physiol Opt 22:248–256. CrossRefGoogle Scholar
  20. 20.
    Ortiz D, Piñero D, Shabayek MH et al (2007) Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg 33:1371–1375. CrossRefGoogle Scholar
  21. 21.
    Kucumen RB, Yenerel NM, Gorgun E et al (2008) Corneal biomechanical properties and intraocular pressure changes after phacoemulsification and intraocular lens implantation. J Cataract Refract Surg 34:2096–2098. CrossRefGoogle Scholar
  22. 22.
    Liu S, Veldman P (2017) Evidence-based endothelial rehabilitation. Semin Ophthalmol 32:96–103. CrossRefGoogle Scholar
  23. 23.
    Heindl LM, Cursiefen C (2012) Split-cornea transplantation - a novel concept to reduce corneal donor shortage. Klin Monatsbl Augenheilkd 229:608–614. CrossRefGoogle Scholar
  24. 24.
    Kandarakis A, Soumplis V, Karampelas M et al (2012) Response of corneal hysteresis and central corneal thickness following clear corneal cataract surgery. Acta Ophthalmol 90:526–529. CrossRefGoogle Scholar
  25. 25.
    del Buey MA, Cristóbal JA, Ascaso FJ et al (2009) Biomechanical properties of the cornea in Fuchs’ corneal dystrophy. Invest Ophthalmol Vis Sci 50:3199–3202. CrossRefGoogle Scholar
  26. 26.
    Touboul D, Roberts C, Kérautret J et al (2008) Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg 34:616–622. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.S. Fyodorov Eye Microsurgery State InstitutionMoscowRussia
  2. 2.Department of OphthalmologyRabin Medical CenterPetah TikvaIsrael
  3. 3.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations