Advertisement

Use of low-vault posterior chamber collagen copolymer phakic intraocular lenses for the correction of myopia: a 3-year follow-up

  • Khosrow Jadidi
  • Seyed Aliasghar MosaviEmail author
  • Farhad Nejat
  • Neda Mohammadi
  • Hosein Aghamolaei
  • Seyed-Hashem Daryabari
  • Hamidreza Torabi
  • Aliagha Alishiri
Refractive Surgery
  • 22 Downloads

Abstract

Background

Phakic intraocular lens (pIOL) models have indicated an association between cataract formation and inadequate vaulting. In this study, the efficacy and safety of low-vault posterior chamber pIOLs in the correction of myopia were examined over 3 years.

Methods

From 316 patients undergoing surgery, 14 eyes with a low vault (≤ 150 μm) were examined from 14 patients. After implanting the Visian Implantable Collamer pIOL for the correction of myopia (moderate and high), the pIOL vault, endothelial cell loss, uncorrected distance visual acuity (UDVA), corrected DVA (CDVA), and detrimental events were examined over 3 years.

Results

Based on the findings, the mean spherical equivalent reduced from − 8.15 ± 3.29 before surgery to − 1.02 ± 0.75 diopters 3 years after the surgery. In terms of visual outcomes, the mean UDVA (Log MAR) significantly increased from 0.95 ± 037 to 0.27 ± 0.28, and the mean CDVA also increased from 0.99 ± 0.11 to 0.06 ± 0.08 (P < 0.05). The mean indices of safety and efficacy were respectively 1.075 and 0.748. The eyes lost not more than two visual acuity lines. Based on the findings, 82% achieved 0.80 or better CDVA, while the total endothelial cell loss was 7.96% during 3 years. Overall, vision-threatening conditions were not reported.

Conclusion

The introduced pIOL can be considered a safe and efficient method for myopia at moderate to high levels.

Keywords

Phakic intraocular lenses Vault Myopia 

Notes

Acknowledgements

The authors wish to thank all personnel at Bina Eye Hospital for their kindly assistance.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

417_2019_4336_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 29 kb)

References

  1. 1.
    Davidorf JM, Zaldivar R, Oscherow S (1998) Posterior chamber phakic intraocular 200 lens for hyperopia of + 4 to+ 11 diopters. J Refract Surg 14(3):306–311.  https://doi.org/10.3928/1081-597X-19980501-14 Google Scholar
  2. 2.
    Pesando PM, Ghiringhello MP, Di Meglio G, Fanton G (2007) Posterior chamber phakic intraocular lens (ICL) for hyperopia: ten-year follow-up. J Cataract Refract Surg 33(9):1579–1584.  https://doi.org/10.1016/j.jcrs.2007.05.030 CrossRefGoogle Scholar
  3. 3.
    Sanders DR, Vukich JA, Doney K, Gaston M (2003) US Food and Drug Administration clinical trial of the implantable contact lens for moderate to high myopia. Ophthalmology 110(2):255–266.  https://doi.org/10.1016/S0161-6420(02)01771-2 CrossRefGoogle Scholar
  4. 4.
    ICL in Treatment of Myopia (ITM) Study Group (2004) United States Food and Drug Administration clinical trial of the implantable Collamer lens (ICL) for moderate to high myopia: three-year follow-up. Ophthalmology 111(9):1683–1692.  https://doi.org/10.1016/j.ophtha.2004.03.026 CrossRefGoogle Scholar
  5. 5.
    Alfonso JF, Fernández-Vega L, Fernandes P, González-Méijome JM, Montés- Micó R (2010) Collagen copolymer toric posterior chamber phakic intraocular lens for myopic astigmatism: one-year follow-up. J Cataract Refract Surg 36(4):568–576.  https://doi.org/10.1016/j.jcrs.2009.10.052 CrossRefGoogle Scholar
  6. 6.
    Alfonso JF, Baamonde B, Madrid-Costa D, Fernandes P, Jorge J, Montés-Micó R (2010) Collagen copolymer toric posterior chamber phakic intraocular lenses to correct high myopic astigmatism. J Cataract Refract Surg 36(8):1349–1357.  https://doi.org/10.1016/j.jcrs.2010.02.022 CrossRefGoogle Scholar
  7. 7.
    Lindland A, Heger H, Kugelberg M, Zetterström C (2010) Vaulting of myopic and toric implantable Collamer lenses during accommodation measured with Visante optical coherence tomography. Ophthalmology 117(6):1245–1250.  https://doi.org/10.1016/j.ophtha.2009.10.033 CrossRefGoogle Scholar
  8. 8.
    Fernandes P, González-Méijome JM, Madrid-Costa D, Ferrer-Blasco T, Jorge J, Montés-Micó R (2011) Implantable Collamer posterior chamber intraocular lenses: a review of potential complications. J Refract Surg 27(10):765–776.  https://doi.org/10.3928/1081597X-20110617-01 CrossRefGoogle Scholar
  9. 9.
    Alfonso JF, Lisa C, Abdelhamid A, Fernandes P, Jorge J, Montés-Micó R (2010) Three-year follow-up of subjective vault following myopic implantable Collamer lens implantation. Graefes Arch Clin Exp Ophthalmol 248(12):1827–1835.  https://doi.org/10.1007/s00417-010-1322-0 CrossRefGoogle Scholar
  10. 10.
    Fujisawa K, Shimizu K, Uga S, Suzuki M, Nagano K, Murakami Y, Goseki H (2007) Changes in the crystalline lens resulting from insertion of a phakic IOL (ICL) into the porcine eye. Graefes Arch Clin Exp Ophthalmol 245(1):114–122.  https://doi.org/10.1007/s00417-006-0338-y CrossRefGoogle Scholar
  11. 11.
    Schmidinger G, Lackner B, Pieh S, Skorpik C (2010) Long-term changes in posterior chamber phakic intraocular Collamer lens vaulting in myopic patients. Ophthalmology 117(8):1506–1511.  https://doi.org/10.1016/j.ophtha.2009.12.013 CrossRefGoogle Scholar
  12. 12.
    Khalifa YM, Moshirfar M, Mifflin MD, Kamae K, Mamalis N, Werner L (2010) Cataract development associated with collagen copolymer posterior chamber phakic intraocular lenses: clinicopathological correlation. J Cataract Refract Surg 36(10):1768–1774.  https://doi.org/10.1016/j.jcrs.2010.04.039 CrossRefGoogle Scholar
  13. 13.
    Moshirfar M, Mifflin M, Wong G, Chang JC (2010) Cataract surgery following phakic intraocular lens implantation. Curr Opin Ophthalmol 21(1):39–44.  https://doi.org/10.1097/ICU.0b013e328333ea2f CrossRefGoogle Scholar
  14. 14.
    Edelhauser HF, Sanders DR, Azar R, Lamielle H, Treatment of Myopia Study Group (2004) Corneal endothelial assessment after ICL implantation. J Cataract Refract Surg 30(3):576–583.  https://doi.org/10.1016/j.jcrs.2003.09.047 CrossRefGoogle Scholar
  15. 15.
    Gonvers M, Bornet C, Othenin-Girard P (2003) Implantable contact lens for moderate to high myopia: relationship of vaulting to cataract formation. J Cataract Refract Surg 29(5):918–924.  https://doi.org/10.1016/S0886-3350(03)00065-8 CrossRefGoogle Scholar
  16. 16.
    Shiratani T, Shimizu K, Fujisawa K, Uga S, Nagano K, Murakami Y (2008) Crystalline lens changes in porcine eyes with implanted phakic IOL (ICL) with a central hole. Graefes Arch Clin Exp Ophthalmol 246(5):719–728.  https://doi.org/10.1007/s00417-007-0759-2 CrossRefGoogle Scholar
  17. 17.
    Gonzalez-Lopez F, Bilbao-Calabuig R, Mompean B, de Rojas V, Luezas J, Djodeyre MR, Beltran J (2013) Intraocular pressure during the early postoperative period after 100 consecutive implantations of posterior chamber phakic intraocular lenses with a central hole. J Cataract Refract Surg 39(12):1859–1863.  https://doi.org/10.1016/j.jcrs.2013.06.020 CrossRefGoogle Scholar
  18. 18.
    Bleckmann H, Keuch RJ (2005) Results of cataract extraction after implantable contact lens removal. J Cataract Refract Surg 31(12):2329–2333.  https://doi.org/10.1016/j.jcrs.2005.05.028 CrossRefGoogle Scholar
  19. 19.
    Pineda-Fernández A, Jaramillo J, Vargas J, Jaramillo M, Jaramillo J, Galíndez A (2004) Phakic posterior chamber intraocular lens for high myopia. J Cataract Refract Surg 30(11):2277–2283.  https://doi.org/10.1016/j.jcrs.2004.03.035 CrossRefGoogle Scholar
  20. 20.
    Kamiya K, Komatsu M, Shimizu K (2009) Factors affecting vaulting after implantable Collamer lens implantation. J Refract Surg 25(3):259–264Google Scholar
  21. 21.
    Dubbelman M, Van der Heijde GL, Weeber HA, Vrensen GFJM (2003) Changes in the internal structure of the human crystalline lens with age and accommodation. Vis Res 43(22):2363–2375.  https://doi.org/10.1016/S0042-6989(03)00428-0 CrossRefGoogle Scholar
  22. 22.
    Seo JH, Kim MK, Wee WR, Lee JH (2009) Effects of white-to-white diameter and anterior chamber depth on implantable Collamer lens vault and visual outcome. J Refract Surg 25(8):730–738.  https://doi.org/10.3928/1081597X-20090707-08 CrossRefGoogle Scholar
  23. 23.
    Chen D, Li Z, Huang J, Yu L, Liu S, Zhao YE (2018) Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2018-312661

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Khosrow Jadidi
    • 1
  • Seyed Aliasghar Mosavi
    • 2
    Email author
  • Farhad Nejat
    • 2
  • Neda Mohammadi
    • 3
  • Hosein Aghamolaei
    • 4
  • Seyed-Hashem Daryabari
    • 1
  • Hamidreza Torabi
    • 1
  • Aliagha Alishiri
    • 5
  1. 1.Health Management Research CenterBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Vision Health Research CenterTehranIran
  3. 3.Department of Epidemiology and Biostatistics, School of Public HealthTehran University of Medical SciencesTehranIran
  4. 4.Applied Biotechnology Research CenterBaqiyatallah University of Medical ScienceTehranIran
  5. 5.Department of OphthalmologyHormozgan University of Medical SciencesBandar AbbasIran

Personalised recommendations