Advertisement

Central retinal venous pressure is higher than intraocular pressure during amateur trumpet playing

  • Egbert Matthé
  • Marie-Caroline Schlief
  • Sylvana Georgii
  • Richard StodtmeisterEmail author
  • Lutz E. Pillunat
  • Hans-Christian Jabusch
Glaucoma
  • 30 Downloads

Abstract

Background

It has been shown in the literature that the Valsalva manoeuvre influences ocular perfusion by changing intraocular pressure and central retinal venous pressure (CRVP). High-resistance wind instrument (HRWI) playing is a common situation resembling a Valsalva manoeuvre. The aim of this investigation was to explore the influence of amateur trumpet playing on CRVP.

Methods

The left eyes of 20 healthy non-professional trumpet players (median age 26, range 19–52 years; 17 males, 3 females) were included in this investigation. Subjects, sitting at a slit lamp, were asked to play the tone b’ flat with their own mouthpiece on the same trumpet for at least 30 s with moderate loudness. The following data were obtained: intraocular pressure (IOP) by applanation tonometry before and during playing, CRVP by contact lens dynamometry before and during playing, airway pressure (AirP) using a pressure sensor during playing and blood pressure and heart rate using the common cuff method before and during playing.

Results

The results are presented as the medians before vs during playing: a calculated mean ophthalmic artery pressure of 66 vs 72 mmHg, heart rate of 76 vs 82 beats per minute, airway pressure of 0 vs 17 mmHg, IOP 12 vs 13 mmHg and CRVP of 24 vs 55 mmHg (Wilcoxon test: p = 0.00009), respectively. A correlation between the CRVP during playing and the height of the spontaneous CRVP is noted (Spearman rank correlation coefficient: ρ = 0.68).

Conclusions

Amateur trumpet playing increases CRVP, airway pressure and IOP. The increase in CRVP is greater than that of the intraocular pressure. The increase in CRVP seems to be more important for retinal perfusion changes during trumpet playing than the increase of IOP. It can be hypothesised that high airway pressure during playing may cause a permanent increase in CRVP, at least in a subgroup of trumpet players.

Keywords

Dynamometry Retinal venous pressure Perfusion pressure Intraocular pressure Glaucoma Wind instrument Airway 

Notes

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Ethical approval

All of the procedures performed in this study involving human participants were in accordance with the ethical standards of the Ethical committee of the Technical University of Dresden and the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study. Permission of subjects for publication of Fig. 1 was obtained.

References

  1. 1.
    Schmidtmann G, Jahnke S, Seidel EJ, Sickenberger W, Grein HJ (2011) Intraocular pressure fluctuations in professional brass and woodwind musicians during common playing conditions. Graefes Arch Clin Exp Ophthalmol 249(6):895–901. https://doi.org/10.1007/s00417-010-1600-x[doi]Google Scholar
  2. 2.
    Kappmeyer K, Lanzl IM (2010) Intra-ocular pressure during and after playing high and low resistance wind instruments. Ophthalmologe 107(1):41–46. https://doi.org/10.1007/s00347-009-2055-5[doi]Google Scholar
  3. 3.
    Schuman JS, Massicotte EC, Connolly S, Hertzmark E, Mukherji B, Kunen MZ (2000) Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology 107(1):127–133CrossRefGoogle Scholar
  4. 4.
    Schmidl D, Werkmeister R, Garhofer G, Schmetterer L (2015) Ocular perfusion pressure and its relevance for glaucoma. Klin Monatsbl Augenheilkd 232(2):141–146.  https://doi.org/10.1055/s-0034-1383398 CrossRefGoogle Scholar
  5. 5.
    Costa VP, Arcieri ES, Harris A (2009) Blood pressure and glaucoma. Br J Ophthalmol 93(10):1276–1282.  https://doi.org/10.1136/bjo.2008.149047 CrossRefGoogle Scholar
  6. 6.
    Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93(2):141–155. https://doi.org/10.1016/j.exer.2010.09.002[doi]Google Scholar
  7. 7.
    Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L (2013) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13(1):36–42. https://doi.org/10.1016/j.coph.2012.09.003[doi]Google Scholar
  8. 8.
    Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol 92(4):e252–e266.  https://doi.org/10.1111/aos.12298 CrossRefGoogle Scholar
  9. 9.
    Schwab B, Schultze-Florey A (2004) Intraorale Druckentwicklung bei Holz- und Blechblaesern. Musikphysiologie und Musikermedizin 11(4):183–194Google Scholar
  10. 10.
    Stodtmeister R, Heyde M, Georgii S, Matthe E, Spoerl E, Pillunat LE (2017) Retinal venous pressure is higher than the airway pressure and the intraocular pressure during the Valsalva manoeuvre. Acta Ophthalmol.  https://doi.org/10.1111/aos.13485
  11. 11.
    Löw UG (2002) Kalibrierung des Kontaktglasdynamometers an enukleierten Schweineaugen und klinischer Vergleich zwischen dem Kontaktglasdynamometer und der Smartlens. Doctoral thesis, Medizinische Fakultaet der Universitaet des Saarlandes, Homburg, GermanyGoogle Scholar
  12. 12.
    Morgan WH, Cringle SJ, Kang MH, Pandav S, Balaratnasingam C, Ezekial D, Yu DY (2010) Optimizing the calibration and interpretation of dynamic ocular force measurements. Graefes Arch Clin Exp Ophthalmol 248(3):401–407CrossRefGoogle Scholar
  13. 13.
    Jabusch HC, Alpers H, Kopiez R, Vauth H, Altenmuller E (2009) The influence of practice on the development of motor skills in pianists: a longitudinal study in a selected motor task. Hum Mov Sci 28(1):74–84.  https://doi.org/10.1016/j.humov.2008.08.001 CrossRefGoogle Scholar
  14. 14.
    Van Vugt FT, Treutler K, Altenmuller E, Jabusch HC (2013) The influence of chronotype on making music: circadian fluctuations in pianists’ fine motor skills. Front Hum Neurosci 7:347.  https://doi.org/10.3389/fnhum.2013.00347 Google Scholar
  15. 15.
    Duke-Elder WS (1926) The venous pressure of the eye and its relation to the intra-ocular pressure. J Physiol 61:409–418CrossRefGoogle Scholar
  16. 16.
    Meyer-Schwickerath R, Stodtmeister R, Hartmann K (2004) Die nicht-invasive Bestimmung des Hirndruckes durch den Augenarzt: physiologische Grundlagen und Vorgehen in der Praxis. Klin Monatsbl Augenheilkd 221(12):1007–1011CrossRefGoogle Scholar
  17. 17.
    Stodtmeister R, Ventzke S, Spoerl E, Boehm AG, Terai N, Haustein M, Pillunat LE (2013) Enhanced pressure in the central retinal vein decreases the perfusion pressure in the prelaminar region of the optic nerve head. Invest Ophthalmol Vis Sci 54(7):4698–4704. https://doi.org/10.1167/iovs.12-10607[doi]Google Scholar
  18. 18.
    Caprioli J, Coleman AL (2010) Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 149(5):704–712. https://doi.org/10.1016/j.ajo.2010.01.018[doi]Google Scholar
  19. 19.
    Westlake WH, Morgan WH, Yu DY (2001) A pilot study of in vivo venous pressures in the pig retinal circulation. Clin Exp Ophthalmol 29(3):167–170CrossRefGoogle Scholar
  20. 20.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ (1997) Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressures. Microvasc Res 53(3):211–221CrossRefGoogle Scholar
  21. 21.
    Pott F, Van Lieshout JJ, Ide K, Madsen P, Secher NH (2000) Middle cerebral artery blood velocity during a Valsalva maneuver in the standing position. J Appl Physiol (1985 ) 88(5):1545–1550CrossRefGoogle Scholar
  22. 22.
    Morgan WH, Balaratnasingam C, Hazelton ML, House PH, Cringle SJ, Yu DY (2005) The force required to induce hemivein pulsation is associated with the site of maximum field loss in glaucoma. Invest Ophthalmol Vis Sci 46(4):1307–1312CrossRefGoogle Scholar
  23. 23.
    Kreuter M, Kreuter C, Herth F (2008) Pneumological aspects of wind instrument performance--physiological, pathophysiological and therapeutic considerations. Pneumologie 62(2):83–87. https://doi.org/10.1055/s-2007-996164[doi]Google Scholar
  24. 24.
    Brody S, Erb C, Veit R, Rau H (1999) Intraocular pressure changes: the influence of psychological stress and the Valsalva maneuver. Biol Psychol 51(1):43–57CrossRefGoogle Scholar
  25. 25.
    Oggel K, Sommer G, Neuhann T, Hinz J (1982) Variations of intraocular pressure during Valsalva’s maneuver in relation to body position and length of the bulbus in myopia (author’s transl). Graefes Arch Clin Exp Ophthalmol 218(1):51–54CrossRefGoogle Scholar
  26. 26.
    Aykan U, Erdurmus M, Yilmaz B, Bilge AH (2010) Intraocular pressure and ocular pulse amplitude variations during the Valsalva maneuver. Graefes Arch Clin Exp Ophthalmol 248(8):1183–1186.  https://doi.org/10.1007/s00417-010-1359-0 CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Wang X, Jonas JB, Wang H, Zhang X, Peng X, Ritch R, Tian G, Yang D, Li L, Li J, Wang N (2014) Valsalva manoeuver, intra-ocular pressure, cerebrospinal fluid pressure, optic disc topography: Beijing intracranial and intra-ocular pressure study. Acta Ophthalmol 92(6):e475–e480.  https://doi.org/10.1111/aos.12263 CrossRefGoogle Scholar
  28. 28.
    Looga R (2005) The Valsalva manoeuvre--cardiovascular effects and performance technique: a critical review. Respir Physiol Neurobiol 147(1):39–49.  https://doi.org/10.1016/j.resp.2005.01.003 CrossRefGoogle Scholar
  29. 29.
    Schmetterer L, Dallinger S, Findl O, Strenn K, Graselli U, Eichler HG, Wolzt M (1998) Noninvasive investigations of the normal ocular circulation in humans. Invest Ophthalmol Vis Sci 39(7):1210–1220Google Scholar
  30. 30.
    Lovasik JV, Kergoat H (2012) Systemic determinants. In: Schmetterer L, Kiel JW (eds) Ocular blood flow, 1st edn. Springer, Heidelberg, pp 173–210CrossRefGoogle Scholar
  31. 31.
    Khan JC, Hughes EH, Tom BD, Diamond JP (2002) Pulsatile ocular blood flow: the effect of the Valsalva manoeuvre in open angle and normal tension glaucoma: a case report and prospective study. Br J Ophthalmol 86(10):1089–1092CrossRefGoogle Scholar
  32. 32.
    Lam AK, Lam CH (2004) Effect of breath-holding on pulsatile ocular blood flow measurement in normal subjects. Optom Vis Sci 81(8):597–600CrossRefGoogle Scholar
  33. 33.
    de Crom R, Webers CAB, van Kooten-Noordzij MAW, Michiels AC, Schouten J, Berendschot T, Beckers HJM (2017) Intraocular pressure fluctuations and 24-hour continuous monitoring for glaucoma risk in wind instrument players. J Glaucoma 26(10):923–928.  https://doi.org/10.1097/IJG.0000000000000747 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity Hospital Carl Gustav Carus, TU DresdenDresdenGermany
  2. 2.Institute of Musicians’ MedicineDresden University of Music Carl Maria von WeberDresdenGermany

Personalised recommendations