Advertisement

Correlation of retinal vascular perfusion density with dark adaptation in diabetic retinopathy

  • Chia-Chieh Hsiao
  • Hsueh-Min Hsu
  • Chung-May Yang
  • Chang-Hao YangEmail author
Retinal Disorders

Abstract

Purpose

To evaluate the anatomic versus functional changes in diabetic retinopathy (DR) by studying the correlation of retinal vascular perfusion density and dark adaptation (DA).

Methods

Optical coherence tomography angiography (OCTA) and DA tests were performed in diabetic patients and nondiabetic controls. DA was measured using AdaptDx dark adaptometer and the rod intercept was recorded. Macular OCTA images were acquired using the RTVue XR Avanti with AngioVue.

Results

Eighty-six eyes from 57 patients with diabetes (19 with no DR, 19 with non-proliferative DR [NPDR], and 19 with proliferative DR [PDR] who had undergone photocoagulation) and 10 eyes from 10 patients without diabetes were recruited. A significant decrease in vascular density and a prolonged rod intercept were found as DR progressed (P < .01). A negative trend was found between vascular density and the rod intercept. The negative trend in the deep layer (R2 = 0.28) was more substantial than that in the superficial layer (R2 = 0.14). A prolonged rod intercept was associated with elevated HbA1c (R2 = 0.08).

Conclusions

The vascular density of the macula could be assessed by OCTA and the functional change in the outer retina could be measured non-invasively by DA. The severity of decreasing vascular density and prolongation of DA are proportional to progression of DR. Decreased deep retinal vascular perfusion density and impaired DA response are correlated and show a negative trend according to the severity of DR.

Keywords

Retinal vascular perfusion density Optical coherence tomography angiography Dark adaptation Diabetic retinopathy Correlation 

Notes

Funding

This study is supported by the joint funding of the National Taiwan University Hospital and SynCoreBio.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived due to the retrospective nature of this study.

References

  1. 1.
    Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BE, Klein R, Krishnaiah S, Mayurasakorn K, O’Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY, Meta-Analysis for Eye Disease Study G (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564.  https://doi.org/10.2337/dc11-1909 CrossRefGoogle Scholar
  2. 2.
    Gardner TW, Abcouwer SF, Barber AJ, Jackson GR (2011) An integrated approach to diabetic retinopathy research. Arch Ophthalmol 129:230–235.  https://doi.org/10.1001/archophthalmol.2010.362 CrossRefGoogle Scholar
  3. 3.
    Kurtenbach A, Mayser HM, Jagle H, Fritsche A, Zrenner E (2006) Hyperoxia, hyperglycemia, and photoreceptor sensitivity in normal and diabetic subjects. Vis Neurosci 23:651–661.  https://doi.org/10.1017/S095252380623339X CrossRefGoogle Scholar
  4. 4.
    Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402.  https://doi.org/10.1073/pnas.1500185112 CrossRefGoogle Scholar
  5. 5.
    Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160:35–44 e31.  https://doi.org/10.1016/j.ajo.2015.04.021 CrossRefGoogle Scholar
  6. 6.
    Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T, Rosen RB (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35:2353–2363.  https://doi.org/10.1097/IAE.0000000000000862 CrossRefGoogle Scholar
  7. 7.
    Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, Wilson DJ, Huang D, Jia Y (2016) Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol 134:367–373.  https://doi.org/10.1001/jamaophthalmol.2015.5658 CrossRefGoogle Scholar
  8. 8.
    Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383.  https://doi.org/10.1097/IAE.0000000000000849 CrossRefGoogle Scholar
  9. 9.
    Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254:1051–1058.  https://doi.org/10.1007/s00417-015-3148-2 CrossRefGoogle Scholar
  10. 10.
    Al-Sheikh M, Akil H, Pfau M, Sadda SR (2016) Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci 57:3907–3913.  https://doi.org/10.1167/iovs.16-19570 CrossRefGoogle Scholar
  11. 11.
    Hasegawa N, Nozaki M, Takase N, Yoshida M, Ogura Y (2016) New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Invest Ophthalmol Vis Sci 57: OCT 348–355 DOI  https://doi.org/10.1167/iovs.15-18782
  12. 12.
    Abraham FA, Haimovitz J, Berezin M (1988) The photopic and scotopic visual thresholds in diabetics without diabetic retinopathy. Metab Pediatr Syst Ophthalmol (1985) 11:76–77Google Scholar
  13. 13.
    Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651Google Scholar
  14. 14.
    Tzekov R, Arden GB (1999) The electroretinogram in diabetic retinopathy. Surv Ophthalmol 44:53–60CrossRefGoogle Scholar
  15. 15.
    Tyrberg M, Ponjavic V, Lovestam-Adrian M (2005) Multifocal electroretinography (mfERG) in insulin dependent diabetics with and without clinically apparent retinopathy. Doc Ophthalmol 110:137–143.  https://doi.org/10.1007/s10633-005-4187-5 CrossRefGoogle Scholar
  16. 16.
    Bavinger JC, Dunbar GE, Stem MS, Blachley TS, Kwark L, Farsiu S, Jackson GR, Gardner TW (2016) The effects of diabetic retinopathy and pan-retinal photocoagulation on photoreceptor cell function as assessed by dark adaptometry. Invest Ophthalmol Vis Sci 57:208–217.  https://doi.org/10.1167/iovs.15-17281 CrossRefGoogle Scholar
  17. 17.
    Arden GB, Jyothi S, Hogg CH, Lee YF, Sivaprasad S (2011) Regression of early diabetic macular oedema is associated with prevention of dark adaptation. Eye (Lond) 25:1546–1554.  https://doi.org/10.1038/eye.2011.264 CrossRefGoogle Scholar
  18. 18.
    Arden GB, Gunduz MK, Kurtenbach A, Volker M, Zrenner E, Gunduz SB, Kamis U, Ozturk BT, Okudan S (2010) A preliminary trial to determine whether prevention of dark adaptation affects the course of early diabetic retinopathy. Eye (Lond) 24:1149–1155.  https://doi.org/10.1038/eye.2009.328 CrossRefGoogle Scholar
  19. 19.
    Arden GB, Sidman RL, Arap W, Schlingemann RO (2005) Spare the rod and spoil the eye. Br J Ophthalmol 89:764–769.  https://doi.org/10.1136/bjo.2004.062547 CrossRefGoogle Scholar
  20. 20.
    Ramsey DJ, Arden GB (2015) Hypoxia and dark adaptation in diabetic retinopathy: interactions, consequences, and therapy. Curr Diab Rep 15:118.  https://doi.org/10.1007/s11892-015-0686-2 CrossRefGoogle Scholar
  21. 21.
    Wu L, Fernandez-Loaiza P, Sauma J, Hernandez-Bogantes E, Masis M (2013) Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 4:290–294.  https://doi.org/10.4239/wjd.v4.i6.290 CrossRefGoogle Scholar
  22. 22.
    Holfort SK, Norgaard K, Jackson GR, Hommel E, Madsbad S, Munch IC, Klemp K, Sander B, Larsen M (2011) Retinal function in relation to improved glycaemic control in type 1 diabetes. Diabetologia 54:1853–1861.  https://doi.org/10.1007/s00125-011-2149-x CrossRefGoogle Scholar
  23. 23.
    Jackson GR, Scott IU, Kim IK, Quillen DA, Iannaccone A, Edwards JG (2014) Diagnostic sensitivity and specificity of dark adaptometry for detection of age-related macular degeneration. Invest Ophthalmol Vis Sci 55:1427–1431.  https://doi.org/10.1167/iovs.13-13745 CrossRefGoogle Scholar
  24. 24.
    Flamendorf J, Agron E, Wong WT, Thompson D, Wiley HE, Doss EL, Al-Holou S, Ferris FL 3rd, Chew EY, Cukras C (2015) Impairments in dark adaptation are associated with age-related macular degeneration severity and reticular pseudodrusen. Ophthalmology 122:2053–2062.  https://doi.org/10.1016/j.ophtha.2015.06.023 CrossRefGoogle Scholar
  25. 25.
    Owsley C, Huisingh C, Jackson GR, Curcio CA, Szalai AJ, Dashti N, Clark M, Rookard K, McCrory MA, Wright TT, Callahan MA, Kline LB, Witherspoon CD, McGwin G, Jr. (2014) Associations between abnormal rod-mediated dark adaptation and health and functioning in older adults with normal macular health. Invest Ophthalmol Vis Sci 55: 4776–4789 DOI  https://doi.org/10.1167/iovs.14-14502
  26. 26.
    Jackson GR, Clark ME, Scott IU, Walter LE, Quillen DA, Brigell MG (2014) Twelve-month natural history of dark adaptation in patients with AMD. Optom Vis Sci 91:925–931.  https://doi.org/10.1097/OPX.0000000000000247 CrossRefGoogle Scholar
  27. 27.
    Gołębiewska J, Olechowski A, Wysocka-Mincewicz M, Odrobina D, Baszyńska-Wilk M, Groszek A, Szalecki M, Hautz W (2017) Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS One 20;12(10):e0186479.  https://doi.org/10.1371/journal.pone.0186479. CrossRefGoogle Scholar
  28. 28.
    Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA (1996) Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 37:886–897Google Scholar
  29. 29.
    Feke GT, Buzney SM, Ogasawara H, Fujio N, Goger DG, Spack NP, Gabbay KH (1994) Retinal circulatory abnormalities in type 1 diabetes. Invest Ophthalmol Vis Sci 35:2968–2975Google Scholar
  30. 30.
    Nair G, Tanaka Y, Kim M, Olson DE, Thule PM, Pardue MT, Duong TQ (2011) MRI reveals differential regulation of retinal and choroidal blood volumes in rat retina. Neuroimage 54:1063–1069.  https://doi.org/10.1016/j.neuroimage.2010.09.020 CrossRefGoogle Scholar
  31. 31.
    Klemp K, Sander B, Brockhoff PB, Vaag A, Lund-Andersen H, Larsen M (2005) The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci 46:2620–2626.  https://doi.org/10.1167/iovs.04-1254 CrossRefGoogle Scholar
  32. 32.
    Bearse MA Jr, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, Barez S (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25:425–448.  https://doi.org/10.1016/j.preteyeres.2006.07.001 CrossRefGoogle Scholar
  33. 33.
    Yonemura D, Aoki T, Tsuzuki K (1962) Electroretinogram in diabetic retinopathy. Arch Ophthalmol 68:19–24CrossRefGoogle Scholar
  34. 34.
    Lains I, Miller JB, Park DH, Tsikata E, Davoudi S, Rahmani S, Pierce J, Silva R, Chen TC, Kim IK, Vavvas D, Miller JW, Husain D (2017) Structural changes associated with delayed dark adaptation in age-related macular degeneration. Ophthalmology 124:1340–1352.  https://doi.org/10.1016/j.ophtha.2017.03.061 CrossRefGoogle Scholar
  35. 35.
    Arden GB (2001) The absence of diabetic retinopathy in patients with retinitis pigmentosa: implications for pathophysiology and possible treatment. Br J Ophthalmol 85:366–370CrossRefGoogle Scholar
  36. 36.
    Birol G, Wang S, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA (2007) Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol 293:H1696–H1704.  https://doi.org/10.1152/ajpheart.00221.2007 CrossRefGoogle Scholar
  37. 37.
    Stone J, van Driel D, Valter K, Rees S, Provis J (2008) The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature. Brain Res 1189:58–69.  https://doi.org/10.1016/j.brainres.2007.10.083 CrossRefGoogle Scholar
  38. 38.
    Wikler KC, Williams RW, Rakic P (1990) Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J Comp Neurol 22;297(4):499–508.  https://doi.org/10.1002/cne.902970404 CrossRefGoogle Scholar
  39. 39.
    Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 22;292(4):497–523.  https://doi.org/10.1002/cne.902920402 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyNational Taiwan University HospitalTaipei CityTaiwan
  2. 2.Department of OphthalmologyNational Taiwan University College of MedicineTaipei CityTaiwan

Personalised recommendations