Monitoring of visual field over 6 months after active ocular toxoplasmosis

  • J. Blot
  • F. Aptel
  • B. F. F. Chumpitazi
  • P. Gain
  • C. Vasseneix
  • O. Savy
  • L. Bouillet
  • H. Pelloux
  • Christophe ChiquetEmail author
Inflammatory Disorders



To prospectively report the perimetric defects during a 6-month follow-up (FU) in patients with initially active ocular toxoplasmosis (OT).


Twenty-four patients were studied, including 11 eyes with chorioretinal toxoplasmosis proven with a positive aqueous humor sample and 13 eyes with a biologically unproven, chorioretinal lesion. Automated 24-2 SITA-Standard visual fields were performed at baseline, at the first, and sixth months of FU. A composite clinical severity score was calculated from visual acuity (VA), severity of vitreitis, chorioretinal lesion size, location of the lesion in zone 1, the presence of an initial macular or papillary edema, and long-term scarring. This provided a relative cutoff level of severity. Nine eyes out of the 24 eyes were considered severe (3 unproven and 6 proven OT).


Initial and final visual field parameters (mean deviation [MD] and pattern standard deviation [PSD]) were significantly correlated (r = 0.873; p < 0.001, and r = 0.890; p < 0.001, respectively). During FU, only foveal threshold [FT] was correlated with VA at baseline (r = 0.48; p = 0.01) and at the 6-month FU visit (r = 0.547; p = 0.004). The MD initial predictive value of clinical severity was 0.739 according to the ROC curve. At baseline, severe and nonsevere OT exhibited no significant difference in term of MD (p = 0.06) and PSD (p = 0.1). During the FU, taking into account all the data, MD, PSD, visual function index [VFI], and FT were associated with the severity of toxoplasmosis (p = 0.018, 0.05, 0.016, and 0.02, respectively): the unproven group had a faster recovery of MD during FU (p = 0.05).


Visual field parameters better reflected the chorioretinal destruction related to the toxoplasmosis lesion and the functional repercussions than VA alone. Interestingly, MD at presentation could be a discriminating factor of severity in active OT, and each visual field parameter follow-up could be a support to manage patients with active OT, especially in the severe group.


Ocular toxoplasmosis  Visual acuity  Scotoma  Visual field 



Association for Research and Teaching in Ophthalmology (ARFO, Grenoble, France), DRCI (Grenoble University Hospital).

Other participating investigators:

Guillemot C., MD, Department of Ophthalmology, University Hospital, Saint Etienne, France.

Fricker-Hidalgo H., MD, Department of Parasitology, University Hospital, Grenoble, France.

Brenier-Pinchart M.P., MD, Department of Parasitology, University Hospital, Grenoble, France.

Lesoin A., MD, Department of Ophthalmology, University Hospital, Grenoble, France and Grenoble Alpes University, Grenoble, F-38041, France.


This study was funded by grant number IRB 2009-A00877-50.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Montoya J, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976Google Scholar
  2. 2.
    Furtado JM, Winthrop KL, Butler NJ et al (2013) Ocular toxoplasmosis I: parasitology, epidemiology and public health: ocular toxoplasmosis. Clin Exp Ophthalmol 41(1):82–94Google Scholar
  3. 3.
    Holland GN (2003) Ocular toxoplasmosis: a global reassessment. Am J Ophthalmol 136(6):973–988Google Scholar
  4. 4.
    Holland GN (2004) Ocular toxoplasmosis: a global reassessment. Am J Ophthalmol 137(1):1–17Google Scholar
  5. 5.
    Pleyer U, Schlüter D, Mänz M (2014) Ocular toxoplasmosis: recent aspects of pathophysiology and clinical implications. Ophthalmic Res 52(3):116–123Google Scholar
  6. 6.
    Weiss LM, Dubey JP (2009) Toxoplasmosis: a history of clinical observations. Int J Parasitol 39(8):895–901Google Scholar
  7. 7.
    Wilder HC (1952) Toxoplasma chorioretinitis in adults. Arch Ophthalmol 48(2):127–136Google Scholar
  8. 8.
    Dodds EM, Holland GN, Stanford MR et al (2008) Intraocular inflammation associated with ocular toxoplasmosis: relationships at initial examination. Am J Ophthalmol 146(6):856–865.e2Google Scholar
  9. 9.
    Martin WG, Brown GC, Parrish RK et al (1980) Ocular toxoplasmosis and visual field defects. Am J Ophthalmol 90(1):25–29Google Scholar
  10. 10.
    Schlaegel TF, Weber JC (1984) The macula in ocular toxoplasmosis. Arch Ophthalmol 102(5):697–698Google Scholar
  11. 11.
    Stanford MR (2005) The visual field in toxoplasmic retinochoroiditis. Br J Ophthalmol 89(7):812–814Google Scholar
  12. 12.
    Scherrer J, Iliev ME, Halberstadt M et al (2007) Visual function in human ocular toxoplasmosis. Br J Ophthalmol 91(2):233–236Google Scholar
  13. 13.
    Delair E, Latkany P, Noble AG et al (2011) Clinical manifestations of ocular toxoplasmosis. Ocul Immunol Inflamm 19(2):91–102Google Scholar
  14. 14.
    Commodaro AG, Belfort RN, Rizzo LV et al (2009) Ocular toxoplasmosis: an update and review of the literature. Mem Inst Oswaldo Cruz 104(2):345–350Google Scholar
  15. 15.
    Garweg JG, de Groot-Mijnes JDF, Montoya JG (2011) Diagnostic approach to ocular toxoplasmosis. Ocul Immunol Inflamm 19(4):255–261Google Scholar
  16. 16.
    Goldmann H, Witmer R (1954) Antikörper im Kammerwasser. Ophthalmologica 127(4–5):323–330Google Scholar
  17. 17.
    Fekkar A, Bodaghi B, Touafek F et al (2008) Comparison of immunoblotting, calculation of the Goldmann-Witmer coefficient, and real-time PCR using aqueous humor samples for diagnosis of ocular toxoplasmosis. J Clin Microbiol 46(6):1965–1967Google Scholar
  18. 18.
    Villard O, Filisetti D, Roch-Deries F et al (2003) Comparison of enzyme-linked immunosorbent assay, immunoblotting, and PCR for diagnosis of Toxoplasmic chorioretinitis. J Clin Microbiol 41(8):3537–3541Google Scholar
  19. 19.
    Fardeau C, Romand S, Rao NA et al (2002) Diagnosis of toxoplasmic retinochoroiditis with atypical clinical features. Am J Ophthalmol 134(2):196–203Google Scholar
  20. 20.
    Cunningham ET (2011) Proportionate topographic areas of retinal zones 1, 2, and 3 for use in describing infectious retinitis. Arch Ophthalmol 129(11):1507Google Scholar
  21. 21.
    European Glaucoma Society (ed) (2014) Terminology and guidelines for glaucoma, 4th edn. PubliComm, Savona, p 195Google Scholar
  22. 22.
    Standardization of Uveitis Nomenclature for Reporting Clinical Data (2005) Results of the first international workshop. Am J Ophthalmol 140(3):509–516Google Scholar
  23. 23.
    Ouyang Y, Pleyer U, Shao Q et al (2014) Evaluation of cystoid change phenotypes in ocular toxoplasmosis using optical coherence tomography. PLoS One 9(2):e86626Google Scholar
  24. 24.
    Diniz B, Regatieri AR et al (2011) Evaluation of spectral domain and time domain optical coherence tomography findings in toxoplasmic retinochoroiditis. Clin Ophthalmol:645–647Google Scholar
  25. 25.
    Monnet D (2009) Optical coherence tomography in ocular toxoplasmosis. Int J Med Sci:137–138Google Scholar
  26. 26.
    Smith JR, Cunningham ET (2002) Atypical presentations of ocular toxoplasmosis. Curr Opin Ophthalmol 13(6):387–392Google Scholar
  27. 27.
    Song A, Scott IU, Davis JL et al (2002) Atypical anterior optic neuropathy caused by toxoplasmosis. Am J Ophthalmol 133(1):162–164Google Scholar
  28. 28.
    Mets MB, Holfels E, Boyer KM et al (1997) Eye manifestations of congenital toxoplasmosis. Am J Ophthalmol 123(1):1–16Google Scholar
  29. 29.
    Maenz M, Schlüter D, Liesenfeld O et al (2014) Ocular toxoplasmosis past, present and new aspects of an old disease. Prog Retin Eye Res 39:77–106Google Scholar
  30. 30.
    Riemslag FCC, Brinkman CJJ, Lunel HFEV et al (1992) Analysis of the electroretinogram in toxoplasma retinochorioiditis. Doc Ophthalmol 82(1–2):57–63Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. Blot
    • 1
    • 2
  • F. Aptel
    • 1
    • 2
    • 3
  • B. F. F. Chumpitazi
    • 4
    • 5
  • P. Gain
    • 6
  • C. Vasseneix
    • 7
  • O. Savy
    • 8
  • L. Bouillet
    • 9
    • 10
  • H. Pelloux
    • 4
    • 5
  • Christophe Chiquet
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Ophthalmology, University Hospital of GrenobleGrenoble Alpes UniversityGrenoble cedex 09France
  2. 2.Grenoble Alpes UniversityGrenobleFrance
  3. 3.INSERM U1042 Lab Hypoxia and Physiopathology HP2GrenobleFrance
  4. 4.Department of ParasitologyUniversity HospitalGrenobleFrance
  5. 5.INSERM U1209 Institute for Advanced Biosciences UMR CNRS-UGA 5309GrenobleFrance
  6. 6.Department of OphthalmologyUniversity HospitalSaint EtienneFrance
  7. 7.Department of OphthalmologyGeneral HospitalValenceFrance
  8. 8.Department of OphthalmologyGeneral HospitalChambéryFrance
  9. 9.Department of Internal MedicineUniversity HospitalGrenobleFrance
  10. 10.INSERM-UGA-CEA-CNRS U1036 Institute for BiosciencesGrenobleFrance

Personalised recommendations