Impact of preoperative visual acuity on Descemet Membrane Endothelial Keratoplasty (DMEK) outcome

  • Silvia SchrittenlocherEmail author
  • B. Bachmann
  • A. M. Tiurbe
  • O. Tuac
  • K. Velten
  • D. Schmidt
  • C. Cursiefen



To evaluate whether and how preoperative visual acuity predicts visual acuity outcome after Descemet Membrane Endothelial Keratoplasty (DMEK).


One thousand eighty-four out of 1162 consecutive eyes having undergone DMEK alone or combined with cataract surgery (triple-DMEK) between July 2011 and February 2016 from the prospective Cologne DMEK database were included and analyzed retrospectively for correlations between pre- and postoperative visual acuity values at 1, 3, 6, and 12 months after transplantation.


There is a significant correlation between pre- and postoperative visual acuity (VA) after (triple)-DMEK after 6 and 12 months (p = 0.005 and p = 0.011 respectively; Pearson’s correlation coefficient 0.240 and 0.224). Preoperative VA below 20/100 leads to delayed and reduced final visual acuity results after 12 months (p < 0.001). However, defining an increase in VA > 0.1 logMAR as clinically relevant, we could not show any clinically relevant significant difference in the time needed to recover to final VA and in final VA. There is no significant difference for preoperative VA values above 20/40. The chance to reach postoperative VA above 20/25 is 40% for preoperative VA of 20/200, 50% for preoperative VA of 20/60 and > 60% for preoperative VA of 20/40.


DMEK results in very good final postoperative visual acuity results even in eyes with very poor preoperative vision caused by corneal pathology. However, preoperative visual acuity values below 20/100 result in significantly poorer visual recovery, which suggests that there is benefit in performing surgery early enough before this value is reached. Preoperative visual acuity seems to be an adjuvant tool for the prediction of the final visual outcome after DMEK.


Cornea DMEK Lamellar keratoplasty Visual outcome 



We would like to thank Ms. Jennifer Austin for the language correction of the manuscript.


This study is funded by DFG FOR 2240 ( and EU ARREST BLINDNESS (

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

417_2018_4193_MOESM1_ESM.pdf (3.9 mb)
ESM 1 (PDF 3947 kb)


  1. 1.
    Melles GR, Ong TS, Ververs B, van der Wees J (2006) Descemet membrane endothelial keratoplasty (DMEK). Cornea 25:987–990. CrossRefGoogle Scholar
  2. 2.
    Price MO, Price FW (2007) Descemet’s stripping endothelial keratoplasty. Curr Opin Ophthalmol 18:290–294. CrossRefGoogle Scholar
  3. 3.
    Maier P, Reinhard T, Cursiefen C (2013) Descemet stripping endothelial keratoplasty--rapid recovery of visual acuity. Dtsch Arztebl Int 110:365–371. Google Scholar
  4. 4.
    Steven P, Hos D, Heindl LM, Bock F, Cursiefen C (2013) Immune reactions after DMEK, DSAEK and DALK. Klin Monatsbl Augenheilkd 230:494–499. CrossRefGoogle Scholar
  5. 5.
    Anshu A, Price MO, Price FW Jr (2012) Risk of corneal transplant rejection significantly reduced with Descemet’s membrane endothelial keratoplasty. Ophthalmology 119:536–540. CrossRefGoogle Scholar
  6. 6.
    Dapena I, Ham L, Netukova M, van der Wees J, Melles GR (2011) Incidence of early allograft rejection after Descemet membrane endothelial keratoplasty. Cornea 30:1341–1345. CrossRefGoogle Scholar
  7. 7.
    Hamzaoglu EC, Straiko MD, Mayko ZM, Sales CS, Terry MA (2015) The first 100 eyes of standardized Descemet stripping automated endothelial Keratoplasty versus standardized Descemet Membrane Endothelial Keratoplasty. Ophthalmology 122:2193–2199. CrossRefGoogle Scholar
  8. 8.
    Hos D, Tuac O, Schaub F, Stanzel TP, Schrittenlocher S, Hellmich M, Bachmann BO, Cursiefen C (2017) Incidence and clinical course of immune reactions after Descemet Membrane Endothelial Keratoplasty: retrospective analysis of 1000 consecutive eyes. Ophthalmology 124:512–518. CrossRefGoogle Scholar
  9. 9.
    Wilson SE, Bourne WM (1988) Fuchs’ dystrophy. Cornea 7:2–18CrossRefGoogle Scholar
  10. 10.
    Amin SR, Baratz KH, McLaren JW, Patel SV (2014) Corneal abnormalities early in the course of Fuchs’ endothelial dystrophy. Ophthalmology 121:2325–2333. CrossRefGoogle Scholar
  11. 11.
    Baratz KH, McLaren JW, Maguire LJ, Patel SV (2012) Corneal haze determined by confocal microscopy 2 years after Descemet stripping with endothelial keratoplasty for Fuchs corneal dystrophy. Arch Ophthalmol 130:868–874. Google Scholar
  12. 12.
    Stanzel TP, Ersoy L, Sansanayudh W, Felsch M, Dietlein T, Bachmann B, Cursiefen C (2016) Immediate postoperative intraocular pressure changes after anterior chamber air fill in Descemet Membrane Endothelial Keratoplasty. Cornea 35:14–19. CrossRefGoogle Scholar
  13. 13.
    Kruse FE, Laaser K, Cursiefen C, Heindl LM, Schlotzer-Schrehardt U, Riss S, Bachmann BO (2011) A stepwise approach to donor preparation and insertion increases safety and outcome of Descemet membrane endothelial keratoplasty. Cornea 30:580–587CrossRefGoogle Scholar
  14. 14.
    Hoerster R, Stanzel TP, Bachmann BO, Siebelmann S, Felsch M, Cursiefen C (2016) Intensified topical steroids as prophylaxis for macular edema after posterior lamellar keratoplasty combined with cataract surgery. Am J Ophthalmol 163:174–179 e172. CrossRefGoogle Scholar
  15. 15.
    Siebelmann S, Gehlsen U, Le Blanc C, Stanzel TP, Cursiefen C, Steven P (2016) Detection of graft detachments immediately following Descemet membrane endothelial keratoplasty (DMEK) comparing time domain and spectral domain OCT. Graefes Arch Clin Exp Ophthalmol.
  16. 16.
    Jonah Gabry BG (2016) rstanarm: Bayesian applied regression modeling via Stan. R package version 2.13.1. Stan Development Team. Accessed 27 Aug 2018
  17. 17.
    Juho Piironen AV (2017) Comparison of Bayesian predictive methods for model selection. Stat Comput.
  18. 18.
    Markus Paasiniemi JP, Vehtari A, Gabry J (2018) Projection Predictive Feature Selection Accessed 27 Aug 2018
  19. 19.
    John Fox SW (2011) An {R} companion to applied regression. Sage, Thousand oaks CAGoogle Scholar
  20. 20.
    Fox JaM G (1992) Generalized collinearity diagnostics. JASA 87:178–183CrossRefGoogle Scholar
  21. 21.
    McLaren JW, Wacker K, Kane KM, Patel SV (2016) Measuring corneal haze by using Scheimpflug photography and confocal microscopy. Invest Ophthalmol Vis Sci 57:227–235. CrossRefGoogle Scholar
  22. 22.
    Wacker K, McLaren JW, Amin SR, Baratz KH, Patel SV (2015) Corneal high-order aberrations and backscatter in Fuchs’ endothelial corneal dystrophy. Ophthalmology 122:1645–1652. CrossRefGoogle Scholar
  23. 23.
    Ripandelli G, Scarinci F, Piaggi P, Guidi G, Pileri M, Cupo G, Sartini MS, Parisi V, Baldanzellu S, Giusti C, Nardi M, Stirpe M, Lazzeri S (2015) Macular pucker: to peel or not to peel the internal limiting membrane? A microperimetric response. Retina 35:498–507. CrossRefGoogle Scholar
  24. 24.
    Grewing R, Mester U (1996) Results of surgery for epiretinal membranes and their recurrences. Br J Ophthalmol 80:323–326CrossRefGoogle Scholar
  25. 25.
    Asaria R, Garnham L, Gregor ZJ, Sloper JJ (2008) A prospective study of binocular visual function before and after successful surgery to remove a unilateral epiretinal membrane. Ophthalmology 115:1930–1937. CrossRefGoogle Scholar
  26. 26.
    Falkner-Radler CI, Glittenberg C, Hagen S, Benesch T, Binder S (2010) Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 117:798–805. CrossRefGoogle Scholar
  27. 27.
    Scheerlinck LM, van der Valk R, van Leeuwen R (2015) Predictive factors for postoperative visual acuity in idiopathic epiretinal membrane: a systematic review. Acta Ophthalmol 93:203–212. CrossRefGoogle Scholar
  28. 28.
    Kunikata H, Abe T, Kinukawa J, Nishida K (2011) Preoperative factors predictive of postoperative decimal visual acuity >/= 1.0 following surgical treatment for idiopathic epiretinal membrane. Clin Ophthalmol 5:147–154. CrossRefGoogle Scholar
  29. 29.
    Inoue M, Morita S, Watanabe Y, Kaneko T, Yamane S, Kobayashi S, Arakawa A, Kadonosono K (2011) Preoperative inner segment/outer segment junction in spectral-domain optical coherence tomography as a prognostic factor in epiretinal membrane surgery. Retina 31:1366–1372. CrossRefGoogle Scholar
  30. 30.
    Rice TA, De Bustros S, Michels RG, Thompson JT, Debanne SM, Rowland DY (1986) Prognostic factors in vitrectomy for epiretinal membranes of the macula. Ophthalmology 93:602–610CrossRefGoogle Scholar
  31. 31.
    McDonald HR, Verre WP, Aaberg TM (1986) Surgical management of idiopathic epiretinal membranes. Ophthalmology 93:978–983CrossRefGoogle Scholar
  32. 32.
    Marco Günther KV (2014) Mathematische Modellbildung und simulation. Wiley-VCH, BerlinGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity of CologneCologneGermany
  2. 2.Department of Mathematics and StatisticsUniversity of GeisenheimGeisenheimGermany

Personalised recommendations