Advertisement

Visual acuity in patients with keratoconus: a comparison with matched regular myopic astigmatism

  • Michael Mimouni
  • Riham Najjar
  • Gilad Rabina
  • Igor Vainer
  • Igor Kaiserman
Cornea
  • 18 Downloads

Abstract

Purpose

To compare uncorrected distance visual acuity (UDVA) and best-corrected distance visual acuity (CDVA) between patients with keratoconus (KC) and matched patients with regular myopic astigmatism.

Methods

This retrospective study included consecutive patients diagnosed with KC between 2008 and 2013 at Care-Vision Laser Centers, Tel-Aviv, Israel, and matched patients with regular myopic astigmatism. Data included were central corneal thickness (CCT), spherical equivalent (SE), cylinder (CYL), mean keratometric power, maximum keratometric power (Kmax), UDVA, CDVA, and defocus equivalent (DEQ).

Results

The KC group included 734 patients with a mean age of 33.8 ± 9.5 years. The matched, control group included 1462 patients with a mean age of 33.2 ± 9.7 years (p = 0.14). The mean SE and CYL of the KC group were − 3.34 ± 3.29D and − 3.01 ± 1.99D, respectively, compared to − 3.34 ± 2.92D (p = 0.98) and − 2.97 ± 1.35 (p = 0.58). Mean K (46.8 ± 3.3D versus 44.0 ± 1.8D, p < 0.0001) and Kmax (48.4 ± 4.0D versus 45.3 ± 2.0D, p < 0.0001) were statically significant higher in the KC group. CCT was significantly thinner in the KC group (444 ± 49 versus 527 ± 40 μm, p < 0.0001). The KC group had a better UDVA than the non-KC group (1.10 ± 0.68 versus 1.22 ± 0.64 logMAR, p < 0.0001). CDVA was significantly lower in the KC group (p < 0.001).

Conclusions

For defocus equivalents above 6D, the KC group had better UDVA than the non-KC group in spite of worse CDVA.

Keywords

Keratoconus Astigmatism UDVA CDVA Defocus equivalent 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study followed the tenets of the Declaration of Helsinki. The research was approved by the Institutional Review Board of the Barzilai Medical Center.

Informed consent

Due to the retrospective nature of this study, there was no need for a signed informed consent from patients.

References

  1. 1.
    McGhee CN (2009) 2008 Sir Norman McAlister Gregg lecture: 150 years of practical observations on the conical cornea - what have we learned? Clin Exp Ophthalmol 37:160–176.  https://doi.org/10.1111/j.1442-9071.2009.02009.x CrossRefPubMedGoogle Scholar
  2. 2.
    Tuft SJ, Moodaley LC, Gregory WM et al (1994) Prognostic factors for the progression of keratoconus. Ophthalmology 101:439–447CrossRefPubMedGoogle Scholar
  3. 3.
    Zadnik K, Steger-May K, Fink BA et al (2002) Between-eye asymmetry in keratoconus. Cornea 21:671–679CrossRefPubMedGoogle Scholar
  4. 4.
    Kennedy RH, Bourne WM, Dyer JA (1986) A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol 101:267–273CrossRefPubMedGoogle Scholar
  5. 5.
    Zadnik K, Barr JT, Gordon MO, Edrington TB (1996) Biomicroscopic signs and disease severity in keratoconus. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group. Cornea 15:139–146CrossRefPubMedGoogle Scholar
  6. 6.
    Rabinowitz YS (1998) Keratoconus. Surv Ophthalmol 42:297–319CrossRefPubMedGoogle Scholar
  7. 7.
    Lawless M, Coster DJ, Phillips AJ, Loane M (1989) Keratoconus: diagnosis and management. Aust N Z J Ophthalmol 17:33–60CrossRefPubMedGoogle Scholar
  8. 8.
    Gomes JAP, Tan D, Rapuano CJ et al (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34:359–369.  https://doi.org/10.1097/ICO.0000000000000408 CrossRefPubMedGoogle Scholar
  9. 9.
    Hashemi H, Beiranvand A, Yekta A et al (2017) Biomechanical properties of early keratoconus: suppressed deformation signal wave. Contact Lens Anterior Eye 40:104–108.  https://doi.org/10.1016/j.clae.2016.12.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Applegate R, Khemsara V, Sarver E (2001) Are all aberrations equal? Optom Vis Sci 78:234.  https://doi.org/10.1097/00006324-200112001-00367 CrossRefGoogle Scholar
  11. 11.
    Jhanji V, Sharma N, Vajpayee RB (2011) Management of keratoconus: current scenario. Br J Ophthalmol 95:1044–1050.  https://doi.org/10.1136/bjo.2010.185868 CrossRefPubMedGoogle Scholar
  12. 12.
    Lass JH, Lembach RG, Park SB et al (1990) Clinical management of keratoconus. A multicenter analysis. Ophthalmology 97:433–445CrossRefPubMedGoogle Scholar
  13. 13.
    Jones MNA, Armitage WJ, Ayliffe W et al (2009) Penetrating and deep anterior lamellar keratoplasty for keratoconus: a comparison of graft outcomes in the United Kingdom. Investig Opthalmol Vis Sci 50:5625.  https://doi.org/10.1167/iovs.09-3994 CrossRefGoogle Scholar
  14. 14.
    PRAMANIK S, MUSCH D, SUTPHIN J, FARJO A (2006) Extended long-term outcomes of penetrating keratoplasty for keratoconus. Ophthalmology 113:1633–1638.  https://doi.org/10.1016/j.ophtha.2006.02.058 CrossRefPubMedGoogle Scholar
  15. 15.
    Choi JA, Lee MA, Kim M-S (2014) Long-term outcomes of penetrating keratoplasty in keratoconus: analysis of the factors associated with final visual acuities. Int J Ophthalmol 7:517–521.  https://doi.org/10.3980/j.issn.2222-3959.2014.03.24 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Krumeich JH, Daniel J, Knülle A (1998) Live-epikeratophakia for keratoconus. J Cataract Refract Surg 24:456–463CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Mashige K (2013) A review of corneal diameter, curvature and thickness values and influencing factors*. S Afr Optom 72:185–194Google Scholar
  18. 18.
    Meek KM, Knupp C (2015) Corneal structure and transparency. Prog Retin Eye Res 49:1–16.  https://doi.org/10.1016/j.preteyeres.2015.07.001 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Mohammadpour M, Heidari Z, Khabazkhoob M et al (2016) Correlation of major components of ocular astigmatism in myopic patients. Contact Lens Anterior Eye 39:20–25.  https://doi.org/10.1016/j.clae.2015.06.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Pantanelli S, MacRae S, Jeong TM, Yoon G (2007) Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high–dynamic range wavefront sensor. Ophthalmology 114:2013–2021.  https://doi.org/10.1016/j.ophtha.2007.01.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Alió JL, Piñero DP, Plaza Puche AB (2008) Corneal wavefront–guided enhancement for high levels of corneal coma aberration after laser in situ keratomileusis. J Cataract Refract Surg 34:222–231.  https://doi.org/10.1016/j.jcrs.2007.09.027 CrossRefPubMedGoogle Scholar
  22. 22.
    Applegate RA (2004) Glenn Fry award lecture 2002: wavefront sensing, ideal corrections, and visual performance. Optom Vis Sci 81:167–177CrossRefPubMedGoogle Scholar
  23. 23.
    Kelly JE, Mihashi T, Howland HC (2004) Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. J Vis 4:262–271.  https://doi.org/10.1167/4.4.2 CrossRefPubMedGoogle Scholar
  24. 24.
    Sabesan R, Yoon G (2010) Neural compensation for long-term asymmetric optical blur to improve visual performance in keratoconic eyes. Investig Opthalmol Vis Sci 51:3835.  https://doi.org/10.1167/iovs.09-4558 CrossRefGoogle Scholar
  25. 25.
    Agarwal A, Prakash G, Jacob S et al (2009) Can uncompensated higher order aberration profile, or aberropia be responsible for subnormal best corrected vision and pseudo-amblyopia. Med Hypotheses 72:574–577.  https://doi.org/10.1016/j.mehy.2008.12.030 CrossRefPubMedGoogle Scholar
  26. 26.
    Rico-Del-Viejo L, Garcia-Montero M, Hernández-Verdejo JL et al (2017) Nonsurgical procedures for keratoconus management. J Ophthalmol 2017:1–17.  https://doi.org/10.1155/2017/9707650 CrossRefGoogle Scholar
  27. 27.
    Nilagiri VK, Metlapally S, Kalaiselvan P et al (2018) LogMAR and stereoacuity in keratoconus corrected with spectacles and rigid gas-permeable contact lenses. Optom Vis Sci 95:391–398.  https://doi.org/10.1097/OPX.0000000000001205 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ophthalmology, Rambam Health Care Campus and Ruth Rappaport Faculty of MedicineTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Ophthalmology, Barzilai Medical Center, Ashkelon and the Faculty of Health SciencesBen-Gurion University of the NegevBeer ShebaIsrael
  3. 3.Division of OphthalmologySourasky Medical Center, Sackler School of MedicineTel AvivIsrael
  4. 4.Care-Vision Laser CentersTel-AvivIsrael

Personalised recommendations