Advertisement

Anterior segment Scheimpflug imaging for detecting primary angle closure disease

  • Andrew Winegarner
  • Atsuya MikiEmail author
  • Miho Kumoi
  • Yuichiro Ishida
  • Taku Wakabayashi
  • Susumu Sakimoto
  • Shinichi Usui
  • Kenji Matsushita
  • Kohji Nishida
Glaucoma
  • 60 Downloads

Abstract

Purpose

To evaluate the capability of anterior segment Scheimpflug imaging for detecting primary angle closure disease (PACD): primary angle closure suspect, primary angle closure, and primary angle closure glaucoma, using cutoff points derived from reference databases of healthy subjects.

Methods

Eighty-seven patients with PACD and 49 age-matched control subjects were included. We evaluated the sensitivity and specificity of anterior chamber depth (ACD), anterior chamber volume (ACV), and anterior chamber angle (ACA) to differentiate patients with PACD from controls. Additionally, the study’s raw data was analyzed via receiver operating characteristic curves for comparison.

Results

One standard deviation from the normative data’s mean values was used as the cutoff point and yielded a sensitivity and specificity of 96.2% and 92.6% for ACD, 97.1% and 75.9% for ACV, and 93.3% and 72.2% for ACA, respectively. Receiver operating characteristic analysis of the raw data showed the area under the curve to be 0.984, 0.975, and 0.931 for ACD, ACV, and ACA, respectively.

Conclusions

Our study demonstrated that the parameters of anterior segment Scheimpflug imaging, particularly ACD, accurately discriminate PACD. This was the first study to validate the device’s normative data in a separate population. With its high reproducibility, ease of use, non-invasiveness, and speed, anterior segment Scheimpflug imaging is a potentially powerful screening tool for PACD.

Keywords

Primary angle closure glaucoma Scheimpflug imaging Primary angle closure Anterior chamber depth Anterior chamber volume Anterior chamber angle 

Notes

Compliance with ethical standards

Conflict of interest

All potential conflicts of interests are listed as follows: Miki A received honorarium from Kowa Pharmaceuticals, Pfizer Japan, Santen Pharmaceuticals, Alcon Japan, Otsuka Pharmaceutical, Novartis Pharma, R-Tech Ueno, Senju Pharmaceutical, Topcon, Ellex Inc., and Alcon Pharma. Nishida K received research support from Otsuka Pharmaceutical, AMO Japan, Topcon, Menicon, Wakamoto, Senju Pharmaceutical, Rohto Pharmaceutical, Santen Pharmaceutical, Novartis Pharma, Alcon Japan, Pfizer Japan, Hoya, Bayer Yakuhin, MSD Japan, and Kowa Pharmaceuticals, and honorarium from Senju Pharmaceutical, Pfizer Japan, Santen Pharmaceutical, Otsuka Pharmaceutical, Novartis Pharma, Alcon Japan, Hoya, Boehringer Ingelheim Japan, Bayer Yakuhin, Kowa Pharmaceuticals, SEED, Chuo Sangio, and Johnson & Johnson Japan. Winegarner A, Kumoi M, Ishida Y, Wakabayashi T, Sakimoto S, Usui S, and Matsushita K declared no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Cheng J, Zong Y, Zeng Y, Wei R (2014) The prevalence of primary angle closure glaucoma in adult Asians: a systematic review and meta-analysis. PLoS One 24(9):7Google Scholar
  2. 2.
    Day AC, Baio G, Gazzard G, Bunce C, Azuara-Blanco A, Munoz B, Friedman DS, Foster PJ (2012) The prevalence of primary angle closure glaucoma in European derived populations: a systemic review. Br J Ophthalmol 96(9):1162–1167CrossRefGoogle Scholar
  3. 3.
    Aung T, Friedman DS, Chew PT et al (2004) Long-term outcomes in Asians after acute primary angle closure. Ophthalmology 111:1464–1469CrossRefGoogle Scholar
  4. 4.
    Weinreb RN, Healey PR, Topouzis F (2008) Glaucoma screening. World Glaucoma Association consensus series 5. Kugler, The HagueGoogle Scholar
  5. 5.
    Foster PJ, Buhrmann R, Quigley HA, Johnson GJ (2002) The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86(2):238–242CrossRefGoogle Scholar
  6. 6.
    Thomas R, George R, Parikh R, Muliyil J, Jacob A (2003) Five year risk of progression of primary angle closure suspects to primary angle closure: a population based study. Br J Ophthalmol 87:450–454CrossRefGoogle Scholar
  7. 7.
    Thomas R, Parikh R, Muliyil J, Kumar RS (2003) Five-year risk of progression of primary angle closure to primary angle closure glaucoma: a population-based study. Acta Ophthalmol Scand 81:480–485CrossRefGoogle Scholar
  8. 8.
    Jain R, Grewal SPS (2009) Pentacam: principle and clinical application. J Curr Glaucoma Pract 3(2):20–32CrossRefGoogle Scholar
  9. 9.
    Labiris G, Gkika M, Katsanos A, Fanariotis M, Alvanos E, Kozobolis V (2009) Anterior chamber volume measurements with Visante optical coherence tomography and Pentacam: repeatability and level of agreement. Clin Exp Ophthalmol 37:772–774CrossRefGoogle Scholar
  10. 10.
    Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K (2008) Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg 34:103–113CrossRefGoogle Scholar
  11. 11.
    Kurita N, Mayama C, Tomidokoro A, Aihara M, Araie M (2009) Potential of the pentacam in screening for primary angle closure and primary angle closure suspect. J Glaucoma 18(7):506–512CrossRefGoogle Scholar
  12. 12.
    Hong S, Yi J, Kang SY, Seong GJ, Kim CY (2009) Detection of occludable angles with the Pentacam and the anterior segment optical coherence tomography. Yonsei Med J 50(4):525–528CrossRefGoogle Scholar
  13. 13.
    Grewal DS, Brar GS, Jain R, Grewal SP (2011) Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles. Eye (Lond) 25(5):603–611CrossRefGoogle Scholar
  14. 14.
    Koç M, Özülken K, Ayar O, Karakurt A (2013) Measurement of the anterior chamber angle according to quadrants and age groups using Pentacam Scheimpflug camera. J Glaucoma 22(3):226–229CrossRefGoogle Scholar
  15. 15.
    Dabasia PL, Edgar DF, Murdoch IE, Lawrenson JG (2015) Noncontact screening methods for the detection of narrow anterior chamber angles. Invest Ophthalmo Vis Sci 56(6):3929–3935CrossRefGoogle Scholar
  16. 16.
    Rabsilber TM, Khoramnia R, Auffarth GU (2006) Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 32(3):456–459CrossRefGoogle Scholar
  17. 17.
    Pakravan M, Sharifipour F, Yazdani S, Koohestani N, Yaseri M (2012) Scheimpflug imaging criteria for identifying eyes at high risk of acute angle closure. J Ophthalmic Vis Res 7(2):111–117Google Scholar
  18. 18.
    Cho YK, Chang HS, La TY et al (2010) Anterior segment parameters using Pentacam and prediction of corneal endothelial cell loss after cataract surgery. Korean J Ophthalmol 24:284CrossRefGoogle Scholar
  19. 19.
    R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Accessed 6 June 2018
  20. 20.
    Herman CR, Gill HK, Eng J, Fajardo LL (2002) Screening for preclinical disease: test and disease characteristics. AJR Am J Roentgenol 179(4):825–831CrossRefGoogle Scholar
  21. 21.
    Omura T, Tanito M, Doi R, Ishida R, Ohira A (2012) Anterior chamber parameters measured using the Pentacam Scheimpflug imaging device before and after cataract surgery in eyes with primary angle closure. Acta Ophthalmol 90(8):e654–e655CrossRefGoogle Scholar
  22. 22.
    Liang J, Liu W, Xing X, Liu H, Zhao S, Ji J (2010) Evaluation of the agreement between Pentacam and ultrasound biomicroscopy measurements of anterior chamber depth in Chinese patients with primary angle-closure glaucoma. Jpn J Ophthalmol 54(4):361–362CrossRefGoogle Scholar
  23. 23.
    Zou X, Duan XC, Zhong Q (2010) Alteration of anterior chamber in 81 glaucomatous eyes using Pentacam Scheimpflug system. Int J Ophthalmol 3(4):349–351Google Scholar
  24. 24.
    Li X, Wang Z, Cao Q, Hu L, Tian F, Dai H (2014) Pentacam could be a useful tool for evaluating and qualifying the anterior chamber morphology. Int J Clin Exp Med 7(7):1878–1882Google Scholar
  25. 25.
    Zhang Y, Li SZ, Li L, Thomas R, Wang NL (2014) The Handan Eye Study: comparison of screening methods for primary angle closure suspects in a rural Chinese population. Ophthalmic Epidemiol 21(4):268–275CrossRefGoogle Scholar
  26. 26.
    Sawaguchi S, Sakai H, Iwase A, Yamamoto T, Abe H, Tomita G, Tomidokoro A, Araie M (2012) Prevalence of primary angle closure and primary angle-closure glaucoma in a southwestern rural population of Japan: the Kumejima Study. Ophthalmology 119(6):1134–1142CrossRefGoogle Scholar
  27. 27.
    Guzman CP, Gong T, Nongpiur ME, Perera SA, How AC, Lee HK, Cheng L, He M, Baskaran M, Aung T (2013) Anterior segment optical coherence tomography parameters in subtypes of primary angle closure. Invest Ophthalmol Vis Sci 54(8):5281–5286CrossRefGoogle Scholar
  28. 28.
    Nongpiur ME, He M, Amerasinghe N, Friedman DS, Tay WT, Baskaran M, Smith SD, Wong TY, Aung T (2011) Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology 118(3):474–479CrossRefGoogle Scholar
  29. 29.
    Tan GS, He M, Zhao W, Sakata LM, Li J, Nonqpiur ME, Lavanya R, Friedman DS, Aung T (2012) Determinants of lens vault and association with narrow angles in patients from Singapore. Am J Ophthalmol 154(1):39–46CrossRefGoogle Scholar
  30. 30.
    Nongpiur ME, Haaland BA, Perera SA, Friedman DS, He M, Sakata LM, Baskaran M, Aung T (2014) Development of a score and probability estimate for detecting angle closure based on anterior segment optical coherence tomography. Am J Ophthalmol 157(1):32–38CrossRefGoogle Scholar
  31. 31.
    Han S, Sung KR, Lee KS, Hong JW (2014) Outcomes of laser peripheral iridotomy in angle closure subgroups according to anterior segment optical coherence tomography parameters. Invest Ophthalmol Vis Sci 55(10):6795–6801CrossRefGoogle Scholar
  32. 32.
    Baskaran M, Iyer JV, Narayanaswamy AK et al (2015) Anterior segment imaging predicts incident gonioscopic angle closure. Ophthalmology 122(12):2380–2384CrossRefGoogle Scholar
  33. 33.
    Smith S, Singh K, Lin S, Chen P (2013) Evaluation of the anterior chamber angle in glaucoma: a report by the american academy of ophthalmology. Ophthalmology 120:1985–1997CrossRefGoogle Scholar
  34. 34.
    Wang D, Qi M, He M, Wu L, Lin S (2012) Ethnic difference of the anterior chamber area and volume and its association with angle width. Invest Ophthalmol Vis Sci 53:3139–3144CrossRefGoogle Scholar
  35. 35.
    Chansangpetch S, Tran B, Perez CI et al (2018) Comparison of anterior segment optical coherence tomography parameters among Vietnamese, Chinese, and Caucasians. Am J Ophthalmol 195:72–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ophthalmology, Graduate School of MedicineOsaka UniversityOsakaJapan
  2. 2.Department of OphthalmologyKansas University Medical CenterKansas CityUSA

Personalised recommendations