Advertisement

Comparison of pre-retinal oxygen pressure changes after selective retina therapy versus conventional photocoagulation in the rabbit eye

  • Jae Ryun Kim
  • Young-Gun Park
  • Young Jung RohEmail author
Basic Science
  • 136 Downloads

Abstract

Purpose

To evaluate oxygen consumption by photoreceptors, we estimated changes in pre-retinal oxygen pressure (PO2) after selective retina therapy (SRT) compared with conventional photocoagulation (PC) in rabbits.

Methods

One eye of each of 10 Chinchilla Bastard rabbits received both 144 laser SRT spots and 144 laser PC spots. Color fundus photography, optical coherence tomography (OCT), and fluorescein angiography were used to evaluate the lesions after treatment. Fiber-optic sensors (optodes) were used to determine the pre-retinal PO2 levels of untreated, SRT-treated, and PC-treated areas of laser-damaged eyes 7 days after treatment. The pre-retinal PO2 was measured in the other five eyes (controls). The same procedures were applied to these remaining five eyes 4 weeks after treatment. Light microscopy (LM) was used to evaluate histological changes 7 days and 4 weeks after treatment.

Results

We found no significant difference in the mean pre-retinal PO2 values among untreated, SRT-treated, and control eyes 7 days after treatment. However, the mean pre-retinal PO2 value in PC-treated regions (24.3 ± 4.9 mmHg; mean ± SD) was higher than those in untreated regions (17.0 ± 1.8 mmHg; P = 0.019), SRT-treated regions (16.7 ± 2.6 mmHg; P = 0.015), and controls (16.9 ± 2.4 mmHg; P = 0.018). Similarly, the mean pre-retinal PO2 of only PC-treated regions (25.2 ± 4.7 mmHg) was higher than those of the untreated regions (16.3 ± 2.5 mmHg; P = 0.006), SRT-treated regions (17.7 ± 3.1 mmHg; P = 0.023), and controls (16.4 ± 2.4 mmHg; P = 0.007) 4 weeks after treatment. OCT and LM revealed selective retinal pigment epithelium damage with the sparing of photoreceptors in SRT lesions.

Conclusions

SRT treatment did not induce changes in the oxygen consumption of photoreceptors, or the pre-retinal PO2.

Keywords

Selective retina therapy (SRT) Retinal pigment epithelium (RPE) Pre-retinal oxygen pressure Rabbit Conventional photocoagulation (PC) 

Notes

Acknowledgements

Animal care and management was supported by the Research Institute of Medical Science of Yeouido St. Mary’s hospital.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    The Diabetic Retinopathy Study Research Group (1981) Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retin opathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 88(7):583–600CrossRefGoogle Scholar
  2. 2.
    Early Treatment Diabetic Retinopathy Study research group (1985) Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 103(12):1796–1806CrossRefGoogle Scholar
  3. 3.
    Henricsson M, Heijl A (1994) The effect of panretinal laser photocoagulation on visual acuity, visual fields and on subjective visual impairment in preproliferative and early proliferative diabetic retinopathy. Acta Ophthalmol 72(5):570–575CrossRefGoogle Scholar
  4. 4.
    Lim JI (1999) Iatrogenic choroidal neovascularization. Surv Ophthalmol 44(2):95–111CrossRefGoogle Scholar
  5. 5.
    Brinkmann R, Roider J, Birngruber R (2006) Selective retina therapy (SRT): a review on methods, techniques, preclinical and first clinical results. Bull Soc Belge Ophtalmol 302:51–69Google Scholar
  6. 6.
    Park YG, Seifert E, Roh YJ, Theisen-Kunde D, Kang S, Brinkmann R (2014) Tissue response of selective retina therapy by means of a feedback-controlled energy ramping mode. Clin Exp Ophthalmol 42(9):846–855.  https://doi.org/10.1111/ceo.12342 CrossRefPubMedGoogle Scholar
  7. 7.
    Roider J, Brinkmann R, Wirbelauer C, Laqua H, Birngruber R (1999) Retinal sparing by selective retinal pigment epithelial photocoagulation. Arch Ophthalmol 117(8):1028–1034CrossRefGoogle Scholar
  8. 8.
    Roider J, Liew SH, Klatt C, Elsner H, Poerksen E, Hillenkamp J, Brinkmann R, Birngruber R (2010) Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 248(9):1263–1272.  https://doi.org/10.1007/s00417-010-1356-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Elsner H, Klatt C, Liew SH, Porksen E, Bunse A, Rudolf M, Brinkmann R, Hamilton RP, Birngruber R, Laqua H, Roider J (2006) Selective retina therapy in patients with diabetic maculopathy. Ophthalmologe 103(10):856–860.  https://doi.org/10.1007/s00347-006-1414-8 CrossRefPubMedGoogle Scholar
  10. 10.
    Klatt C, Saeger M, Oppermann T, Porksen E, Treumer F, Hillenkamp J, Fritzer E, Brinkmann R, Birngruber R, Roider J (2011) Selective retina therapy for acute central serous chorioretinopathy. Br J Ophthalmol 95(1):83–88.  https://doi.org/10.1136/bjo.2009.178327 CrossRefPubMedGoogle Scholar
  11. 11.
    Kang S, Park YG, Kim JR, Seifert E, Theisen-Kunde D, Brinkmann R, Roh YJ (2016) Selective retina therapy in patients with chronic central serous chorioretinopathy: a pilot study. Medicine (Baltimore) 95(3):e2524.  https://doi.org/10.1097/MD.0000000000002524 CrossRefGoogle Scholar
  12. 12.
    Park YG, Kim JR, Kang S, Seifert E, Theisen-Kunde D, Brinkmann R, Roh YJ (2016) Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients. Graefes Arch Clin Exp Ophthalmol 254(9):1703–1713.  https://doi.org/10.1007/s00417-015-3262-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Park YG, Kang S, Brinkmann R, Roh YJ (2015) A comparative study of retinal function in rabbits after Panretinal selective retina therapy versus conventional panretinal photocoagulation. J Ophthalmol 2015:247259.  https://doi.org/10.1155/2015/247259 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kim HD, Han JW, Ohn YH, Brinkmann R, Park TK (2014) Functional evaluation using multifocal electroretinogram after selective retina therapy with a microsecond-pulsed laser. Invest Ophthalmol Vis Sci 56(1):122–131.  https://doi.org/10.1167/iovs.14-15132 CrossRefPubMedGoogle Scholar
  15. 15.
    Treumer F, Klettner A, Baltz J, Hussain AA, Miura Y, Brinkmann R, Roider J, Hillenkamp J (2012) Vectorial release of matrix metalloproteinases (MMPs) from porcine RPE-choroid explants following selective retina therapy (SRT): towards slowing the macular ageing process. Exp Eye Res 97(1):63–72.  https://doi.org/10.1016/j.exer.2012.02.011 CrossRefPubMedGoogle Scholar
  16. 16.
    Jobling AI, Guymer RH, Vessey KA, Greferath U, Mills SA, Brassington KH, Luu CD, Aung KZ, Trogrlic L, Plunkett M, Fletcher EL (2015) Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage. FASEB J 29(2):696–710.  https://doi.org/10.1096/fj.14-262444 CrossRefPubMedGoogle Scholar
  17. 17.
    Stefansson E (2001) The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79(5):435–440CrossRefGoogle Scholar
  18. 18.
    Novack RL, Stefansson E, Hatchell DL (1990) The effect of photocoagulation on the oxygenation and ultrastructure of avascular retina. Exp Eye Res 50(3):289–296CrossRefGoogle Scholar
  19. 19.
    Yu DY, Cringle SJ, Su E, Yu PK, Humayun MS, Dorin G (2005) Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits. Invest Ophthalmol Vis Sci 46(3):988–999.  https://doi.org/10.1167/iovs.04-0767 CrossRefPubMedGoogle Scholar
  20. 20.
    Peterson JI, Fitzgerald RV, Buckhold DK (1984) Fiber-optic probe for in vivo measurement of oxygen partial pressure. Anal Chem 56(1):62–67CrossRefGoogle Scholar
  21. 21.
    Framme C, Walter A, Berger L, Prahs P, Alt C, Theisen-Kunde D, Kowal J, Brinkmann R (2015) Selective retina therapy in acute and chronic-recurrent central serous chorioretinopathy. Ophthalmologica 234(4):177–188.  https://doi.org/10.1159/000439188 CrossRefPubMedGoogle Scholar
  22. 22.
    Roider J, Brinkmann R, Wirbelauer C, Laqua H, Birngruber R (2000) Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study. Br J Ophthalmol 84(1):40–47CrossRefGoogle Scholar
  23. 23.
    Framme C, Schuele G, Roider J, Birngruber R, Brinkmann R (2004) Influence of pulse duration and pulse number in selective RPE laser treatment. Lasers Surg Med 34(3):206–215.  https://doi.org/10.1002/lsm.20022 CrossRefPubMedGoogle Scholar
  24. 24.
    Yasui A, Yamamoto M, Hirayama K, Shiraki K, Theisen-Kunde D, Brinkmann R, Miura Y, Kohno T (2017) Retinal sensitivity after selective retina therapy (SRT) on patients with central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 255(2):243–254.  https://doi.org/10.1007/s00417-016-3441-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Cringle SJ, Yu DY (2004) Intraretinal oxygenation and oxygen consumption in the rabbit during systemic hyperoxia. Invest Ophthalmol Vis Sci 45(9):3223–3228.  https://doi.org/10.1167/iovs.03-1364 CrossRefPubMedGoogle Scholar
  26. 26.
    Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20(2):175–208CrossRefGoogle Scholar
  27. 27.
    Lim JK, Nguyen CT, He Z, Vingrys AJ, Bui BV (2014) The effect of ageing on ocular blood flow, oxygen tension and retinal function during and after intraocular pressure elevation. PLoS One 9(5):e98393.  https://doi.org/10.1371/journal.pone.0098393 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sato Y, Berkowitz BA, Wilson CA, de Juan E Jr (1992) Blood-retinal barrier breakdown caused by diode vs argon laser endophotocoagulation. Arch Ophthalmol 110(2):277–281CrossRefGoogle Scholar
  29. 29.
    Funatsu H, Wilson CA, Berkowitz BA, Sonkin PL (1997) A comparative study of the effects of argon and diode laser photocoagulation on retinal oxygenation. Graefes Arch Clin Exp Ophthalmol 235(3):168–175CrossRefGoogle Scholar
  30. 30.
    Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S, Mak G, Holekamp NM, Lewis A, Beebe DC (2006) Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci 47(4):1571–1580.  https://doi.org/10.1167/iovs.05-1475 CrossRefPubMedGoogle Scholar
  31. 31.
    Koinzer S, Saeger M, Hesse C, Portz L, Kleemann S, Schlott K, Brinkmann R, Roider J (2013) Correlation with OCT and histology of photocoagulation lesions in patients and rabbits. Acta Ophthalmol 91(8):e603–e611.  https://doi.org/10.1111/aos.12188 CrossRefPubMedGoogle Scholar
  32. 32.
    Kim HD, Jang SY, Lee SH, Kim YS, Ohn YH, Brinkmann R, Park TK (2016) Retinal pigment epithelium responses to selective retina therapy in mouse eyes. Invest Ophthalmol Vis Sci 57(7):3486–3495CrossRefGoogle Scholar
  33. 33.
    Sher A, Jones BW, Huie P, Paulus YM, Lavinsky D, Leung LS, Nomoto H, Beier C, Marc RE, Palanker D (2013) Restoration of retinal structure and function after selective photocoagulation. J Neurosci 33(16):6800–6808CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jae Ryun Kim
    • 1
  • Young-Gun Park
    • 1
  • Young Jung Roh
    • 1
    Email author
  1. 1.Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulSouth Korea

Personalised recommendations