OCTA vessel density changes in the macular zone in glaucomatous eyes

  • C. LommatzschEmail author
  • K. Rothaus
  • J.M. Koch
  • C. Heinz
  • S. Grisanti



To evaluate whether macular optical coherence tomography angiography (OCTA) can detect altered vessel density (VD) in the superficial and deep vascular plexus in glaucomatous eyes and to compare the diagnostic utility of the individual VD parameters.


The macular VD of 135 eyes, comprising 85 eyes diagnosed with glaucoma and 50 healthy control eyes, was examined using two OCTA devices (AngioPlex—Zeiss Meditec, Inc., Dublin, CA, USA, and AngioVue—OptoVue, Inc., Fremont, CA, USA). All study participants had neither vascular pathology, diabetes, nor vasoactive medication. The macular VD was measured at two different levels of segmentation (superficial [SL] and deep [DL] retinal vascular plexus) with a 6 × 6-mm macula scan, and VD was correlated with various structural and functional measurements. In order to test the accuracy of differentiation between eyes with and without glaucoma, we calculated the receiver operating characteristic (ROC) curve and the area under the curve (AUC).


Macular VD was significantly lower in both SL and DL in glaucomatous eyes than in healthy eyes (p = SL < 0.0001; DL = 0.009). There was no significant difference in VD between the SL and the DL (p = 6.60 · 10−18). The greatest reduction of VD in glaucomatous eyes was found in the inferior macular sector. There was no correlation of VD with age or refractive error but moderate to high correlation with intraocular pressure, time of initial diagnosis, mean deviation, ganglion cell complex, peripapillary retinal nerve fiber layer thickness, cup to disc ratio, and rim area. Among the 14 individual features of macular VD, whole VD in the SL had the best diagnostic accuracy (77.6%) as measured by the area under the ROC.


OCTA detects glaucomatous damage by measuring the macular vessel density in the superficial and deep retinal vascular plexus. It can be an additional diagnostic tool to detect glaucoma independently of the optic nerve.


OCT angiography Glaucoma Macula Blood flow Vessel density 


Compliance with ethical standards

Conflict of interest

CL lecture: Optovue, Heidelberg Engineering, Alcon. All other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Ethik-Kommission - Aerztekammer Westfalen-Lippe) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Jia Y, Morrison JC, Tokayer J et al (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3:3127–3137. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Takusagawa HL, Liu L, Ma KN, et al (2017) Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology doi:
  3. 3.
    Manalastas PIC, Zangwill LM, Saunders LJ, et al (2017) Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma doi:
  4. 4.
    Wei E, Jia Y, Tan O et al (2013) Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS One 8:e81343. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Xu H, Kong XM (2017) Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients. Zhonghua Yan Ke Za Zhi Chin J Ophthalmol 53:98–103Google Scholar
  6. 6.
    Rao HL, Pradhan ZS, Weinreb RN et al (2017) A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One 12:e0173930. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shoji T, Zangwill LM, Akagi T, et al (2017) Progressive macula vessel density loss in primary open angle glaucoma: a longitudinal study. Am J Ophthalmol. doi: 710.1016/j.ajo.2017.07.011Google Scholar
  8. 8.
    Hood DC, Raza AS, de Moraes CGV et al (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21. CrossRefPubMedGoogle Scholar
  9. 9.
    Cohen J (1992) A power primer. Psychol Bull 112:155–159CrossRefGoogle Scholar
  10. 10.
    Sommer A, Tielsch JM, Katz J et al (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol Chic Ill 1960 109:1090–1095CrossRefGoogle Scholar
  11. 11.
    Quigley HA (1993) Open-angle glaucoma. N Engl J Med 328:1097–1106. CrossRefPubMedGoogle Scholar
  12. 12.
    Pfeiffer N, Krieglstein GK, Wellek S (2002) Knowledge about glaucoma in the unselected population: a German survey. J Glaucoma 11:458–463CrossRefGoogle Scholar
  13. 13.
    Flammer J, Mozaffarieh M (2008) Autoregulation, a balancing act between supply and demand. Can J Ophthalmol J Can Ophtalmol 43:317–321. CrossRefGoogle Scholar
  14. 14.
    Galassi F, Giambene B, Varriale R (2011) Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Invest Ophthalmol Vis Sci 52:4467–4471. CrossRefPubMedGoogle Scholar
  15. 15.
    Flammer J, Orgül S, Costa VP et al (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393CrossRefGoogle Scholar
  16. 16.
    Kim YK, Yoo BW, Jeoung JW et al (2016) Glaucoma-diagnostic ability of ganglion cell-inner plexiform layer thickness difference across temporal raphe in highly myopic eyes. Invest Ophthalmol Vis Sci 57:5856–5863. CrossRefPubMedGoogle Scholar
  17. 17.
    Mwanza J-C, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158. CrossRefPubMedGoogle Scholar
  18. 18.
    Wang X, Jiang C, Ko T et al (2015) Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 253:1557–1564. CrossRefGoogle Scholar
  19. 19.
    Lévêque P-M, Zéboulon P, Brasnu E et al (2016) Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol 2016:6956717. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lommatzsch C, Koch JM, Claußnitzer H, Heinz C (2017) OCT angiography of the glaucoma optic nerve. Klin Monatsbl Augenheilkd. doi:
  21. 21.
    Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25. CrossRefPubMedGoogle Scholar
  22. 22.
    Heijl A, Lundqvist L (1984) The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta Ophthalmol 62:658–664CrossRefGoogle Scholar
  23. 23.
    Anctil JL, Anderson DR (1984) Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol Chic Ill 1960 102:363–370CrossRefGoogle Scholar
  24. 24.
    Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina choroid in health disease. Prog Retin Eye Res 31:377–406. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kurysheva NI, Maslova EV, Trubilina AV et al (2017) Macular blood flow in glaucoma. Vestn Oftalmol 133:29–38CrossRefGoogle Scholar
  26. 26.
    Rao HL, Pradhan ZS, Weinreb RN et al (2017) Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol 177:106–115. CrossRefPubMedGoogle Scholar
  27. 27.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2017) Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124:709–719. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Akil H, Chopra V, Al-Sheikh M, et al (2017) Swept-source OCT angiography imaging of the macular capillary network in glaucoma. Br J Ophthalmol doi:
  29. 29.
    Chen HS-L, Liu C-H, Wu W-C et al (2017) Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 58:3637–3645. CrossRefPubMedGoogle Scholar
  30. 30.
    Gadde SGK, Anegondi N, Bhanushali D et al (2016) Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci 57:246–252. CrossRefPubMedGoogle Scholar
  31. 31.
    Pinhas A, Razeen M, Dubow M et al (2014) Assessment of perfused foveal microvascular density and identification of nonperfused capillaries in healthy and vasculopathic eyes. Invest Ophthalmol Vis Sci 55:8056–8066. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rao HL, Pradhan ZS, Weinreb RN et al (2016) Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol 171:75–83. CrossRefPubMedGoogle Scholar
  33. 33.
    Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:5780–5787. CrossRefPubMedGoogle Scholar
  34. 34.
    Coscas F, Sellam A, Glacet-Bernard A et al (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT211–OCT223. CrossRefPubMedGoogle Scholar
  35. 35.
    Pillunat LE, Böhm AG, Köller AU et al (1999) Effect of topical dorzolamide on optic nerve head blood flow. Graefes arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 237:495–500CrossRefGoogle Scholar
  36. 36.
    Arend O, Harris A, Arend S et al (1998) The acute effect of topical beta-adrenoreceptor blocking agents on retinal and optic nerve head circulation. Acta Ophthalmol Scand 76:43–49CrossRefGoogle Scholar
  37. 37.
    Jia Y, Wei E, Wang X et al (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu L, Jia Y, Takusagawa HL et al (2015) Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 133:1045–1052. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vandewalle E, Abegão Pinto L, Olafsdottir OB, Stalmans I (2013) Phenylephrine 5% added to tropicamide 0.5% eye drops does not influence retinal oxygen saturation values or retinal vessel diameter in glaucoma patients. Acta Ophthalmol 91:733–737. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OphthalmologySt. Franziskus HospitalMuensterGermany
  2. 2.Department of OphthalmologyUniversity of EssenEssenGermany
  3. 3.Department of OphthalmologyUniversity of LuebeckLuebeckGermany

Personalised recommendations