Increased soluble urokinase plasminogen activator receptor (suPAR) levels in neovascular age-related macular degeneration: a role for inflammation in the pathogenesis of the disease?

  • Fabrizio Scotti
  • Paolo Milani
  • Marco Setaccioli
  • Silvia Maestroni
  • Nicolai Sidenius
  • Valentina De Lorenzi
  • Amedeo Massacesi
  • Fulvio Bergamini
  • Gianpaolo ZerbiniEmail author
Retinal Disorders



To evaluate the plasma concentration of the soluble form of the urokinase-type plasminogen activator receptor ((s)uPAR), an established biomarker of chronic inflammation, in patients affected by neovascular age-related macular degeneration.


Forty consecutive patients affected by age-related macular degeneration and 52 subjects with no history of the disease were included in this case–control study. The two groups of individuals considered for the study were matched for age, sex, and class of medications taken. Plasma concentration of suPAR was measured using a specific ELISA assay (suPARnostic, Birkeroed, Denmark).


The case and control groups were similar for age, gender distribution, weight, height, and systolic and diastolic blood pressure, as well as for dyslipidemia and high blood pressure medication (P > 0.28). The plasma concentrations of suPAR were significantly increased in patients with neovascular age-related macular degeneration when compared to controls (6.19 ± 2.2 ng/ml, vs 5.21 ± 1.5, respectively, mean ± SD P = 0.01).


Patients with neovascular age-related macular degeneration display increased plasma levels of suPAR, suggesting that chronic inflammation may be involved in the pathogenesis of the disease.


Neovascular age-related macular degeneration Soluble urokinase plasminogen activator receptor Inflammation Prevention 



This study was supported by a Grant from the International Agency for the Prevention of Blindness (IAPB), Italian section (Dr Scotti).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Desmedt S, Desmedt V, Delanghe JR, Speeckaert R, Speeckaert MM (2017) The intriguing role of soluble urokinase receptor in inflammatory diseases. Crit Rev Clin Lab Sci 54(2):117–133. CrossRefGoogle Scholar
  2. 2.
    Hodges GW, Bang CN, Wachtell K, Eugen-Olsen J, Jeppesen JL (2015) suPAR: a new biomarker for cardiovascular disease? Can J Cardiol 31(10):1293–1302. CrossRefGoogle Scholar
  3. 3.
    Kronbichler A, Saleem MA, Meijers B, Shin JI (2016) Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:2068691. CrossRefGoogle Scholar
  4. 4.
    Xue W, Hashimoto K, Toi Y (1998) Functional involvement of urokinase-type plasminogen activator receptor in pemphigus acantholysis. J Cutan Pathol 25(9):469–474CrossRefGoogle Scholar
  5. 5.
    Del Rosso M, Fibbi G, Matucci Cerinic M (1999) The urokinase-type plasminogen activator system and inflammatory joint diseases. Clin Exp Rheumatol 17(4):485–498Google Scholar
  6. 6.
    Toldi G, Bekő G, Kádár G, Mácsai E, Kovács L, Vásárhelyi B, Balog A (2013) Soluble urokinase soluble urokinase plasminogen activator receptor (suPAR) in the assessment of inflammatory activity of rheumatoid arthritis patients in remission. Clin Chem Lab Med 51(2):327–332. CrossRefGoogle Scholar
  7. 7.
    Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W (2014) Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 20:1003–1016. CrossRefGoogle Scholar
  8. 8.
    Elner SG, Elner VM, Kindzelskii AL, Horino K, Davis HR, Todd RF 3rd, Glagov S, Petty HR (2003) Human RPE cell lysis of extracellular matrix: functional urokinase plasminogen activator receptor (uPAR), collagenase and elastase. Exp Eye Res 76(5):585–595CrossRefGoogle Scholar
  9. 9.
    Alexander JP, Bradley JMB, Gabourel JD, Acott TS (1990) Expression of matrix metalloproteinases and inhibitor by human retinal pigment epithelium. Invest Ophthalmol Vis Sci 31(12):2520–2528Google Scholar
  10. 10.
    Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, Eldem B, Monés J, Richard G, Bandello F, European Society of Retina Specialists (2014) Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 98(9):1144–1167. CrossRefGoogle Scholar
  11. 11.
    Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 10:1857–1867. CrossRefGoogle Scholar
  12. 12.
    Cascella R, Strafella C, Longo G, Ragazzo M, Manzo L, De Felici C, Errichiello V, Caputo V, Viola F, Eandi CM, Staurenghi G, Cusumano A, Mauriello S, Marsella LT, Ciccacci C, Borgiani P, Sangiuolo F, Novelli G, Ricci F, Giardina E (2017) Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration: significant association of twelve variants. Oncotarget 9(8):7812–7821. Google Scholar
  13. 13.
    Hong T, Tan AG, Mitchell P, Wang JJ (2011) A review and meta-analysis of the association between C-reactive protein and age-related macular degeneration. Surv Ophthalmol 56(3):184–194. CrossRefGoogle Scholar
  14. 14.
    Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N (2004) Association between C-reactive protein and age-related macular degeneration. JAMA 291(6):704–710. CrossRefGoogle Scholar
  15. 15.
    Bhutto IA, Baba T, Merges C, Juriasinghani V, McLeod DS, Lutty GA (2011) C-reactive protein and complement factor H in aged human eyes and eyes with age-related macular degeneration. Br J Ophthalmol 95(9):1323–1330. CrossRefGoogle Scholar
  16. 16.
    Iannaccone A, Neeli I, Krishnamurthy P, Lenchik NI, Wan H, Gerling IC, Desiderio DM, Radic MZ (2012) Autoimmune biomarkers in age-related macular degeneration: a possible role player in diseasedevelopment and progression. Adv Exp Med Biol 723:11–16. CrossRefGoogle Scholar
  17. 17.
    Paun CC, Ersoy L, Schick T, Groenewoud JM, Lechanteur YT, Fauser S, Hoyng CB, de Jong EK, denHollander AI (2015) Genetic variants and systemic complement activation levels are associated with serum lipoprotein levels in age-related macular degeneration. Invest Ophthalmol Vis Sci 56(13):7766–7773. CrossRefGoogle Scholar
  18. 18.
    Lambert NG, El Shelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK (2016) Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 54:64–102. CrossRefGoogle Scholar
  19. 19.
    Dande RR, Peev V, Altintas MM, Reiser J (2017) Soluble urokinase receptor and the kidney response in diabetes mellitus. J Diabetes Res 2017:3232848. CrossRefGoogle Scholar
  20. 20.
    Stephens RW, Pedersen AN, Nielsen HJ, Hamers MJ, Høyer-Hansen G, Rønne E, Dybkjaer E, Danø K, Brünner N (1997) ELISA determination of soluble urokinase receptor in blood from healthy donors and cancer patients. Clin Chem 43(10):1868–1876Google Scholar
  21. 21.
    Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73(9):1765–1786. CrossRefGoogle Scholar
  22. 22.
    Ozaki E, Campbell M, Kiang AS, Humphries M, Doyle SL, Humphries P (2014) Inflammation in age-related macular degeneration. Adv Exp Med Biol 801:229–235. CrossRefGoogle Scholar
  23. 23.
    Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10(9):802–823CrossRefGoogle Scholar
  24. 24.
    Chan CC, Ardeljan D (2014) Molecular pathology of macrophages and interleukin-17 in age-related macular degeneration. Adv Exp Med Biol 801:193–198. CrossRefGoogle Scholar
  25. 25.
    Liu B, Wei L, Meyerle C, Tuo J, Sen HN, Li Z, Chakrabarty S, Agron E, Chan CC, Klein ML, Chew E, Ferris F, Nussenblatt RB (2011) Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J Transl Med 9:1–12. CrossRefGoogle Scholar
  26. 26.
    De Lorenzi V, Sarra Ferraris GM, Madsen JB, Lupia M, Andreasen PA, Sidenius N (2016) Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin. EMBO Rep 17(7):982–998. CrossRefGoogle Scholar
  27. 27.
    Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223(2):69–76CrossRefGoogle Scholar
  28. 28.
    Ding X, Patel M, Chan CC (2009) Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 28(1):1–18.
  29. 29.
    Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen TW, Langkilde A, Petersen J, Pielak T, Møller LN, Jeppesen J, Lyngbaek S, Fenger M, Olsen MH, Hildebrandt PR, Borch-Johnsen K, Jørgensen T, Haugaard SB (2010) Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med 268(3):296–308. CrossRefGoogle Scholar
  30. 30.
    Small KW, Garabetian CA, Shaya FS (2017) Macular degeneration and aspirin use. Retina 37(9):1630–1635. CrossRefGoogle Scholar
  31. 31.
    Modjtahedi BS, Fong DS, Jorgenson E, Van Den Eeden SK, Quinn V, Slezak JM (2018) The relationship between nonsteroidal anti-inflammatory drug use and age-related macular degeneration. Am J Ophthalmol 188:111–122. CrossRefGoogle Scholar
  32. 32.
    Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, Rahimi HR, Tajfard M, Ferns G (2018) Serum C-reactive protein in the prediction of cardiovascular diseases: overview of the latest clinical studies and public health practice. J Cell Physiol.
  33. 33.
    Xin X, Sun Y, Li S, Xu H, Zhang D (2018) Age-related macular degeneration and the risk of all-cause and cardiovascular mortality: a meta-analysis of cohort studies. Retina 38(3):497–507. CrossRefGoogle Scholar
  34. 34.
    Ichihara N, Miyamura M, Maeda D, Fujisaka T, Fujita SI, Morita H, Takeda Y, Ito T, Sohmiya K, Hoshiga M, Ishizaka N (2017) Association between serum soluble urokinase-type plasminogen activator receptor and atrial fibrillation. J Arrhythm 33(5):469–474. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabrizio Scotti
    • 1
  • Paolo Milani
    • 1
  • Marco Setaccioli
    • 1
  • Silvia Maestroni
    • 2
  • Nicolai Sidenius
    • 3
  • Valentina De Lorenzi
    • 3
  • Amedeo Massacesi
    • 1
  • Fulvio Bergamini
    • 1
  • Gianpaolo Zerbini
    • 2
    Email author
  1. 1.Ophthalmology DepartmentIRCCS Istituto Auxologico ItalianoMilanItaly
  2. 2.Complications of Diabetes UnitDiabetes Research Institute, IRCCS San Raffaele Scientific InstituteMilanItaly
  3. 3.Unit of Cell Matrix SignallingIFOM The FIRC Institute of Molecular OncologyMilanItaly

Personalised recommendations