Vascular remodeling of choroidal neovascularization in older myopic patients treated with ranibizumab

  • Salomon Y. CohenEmail author
  • Sandrine Tabary
  • Ala El Ameen
  • Sarah Mrejen
  • Gabriel Quentel
  • Audrey Giocanti-Auregan
Retinal Disorders



To investigate morphological changes in myopic choroidal neovascularization (mCNV) using optical coherence tomography-angiography (OCT-A) after treatment with ranibizumab.


Retrospective analysis of consecutive patients over a 24-month period. All treatment-naïve mCNV were imaged at baseline with color pictures, spectral-domain OCT and OCT-A, and fluorescein angiography in selected cases. CNV morphology was classified at baseline and at 6 months. The CNV lesion surface was also compared.


Twenty-nine patients with a mean age of 70.3 ± 10.1 years were included. They received a mean number of 2.65 injections over 6 months. Best-corrected visual acuity improved from 62.2 to 68.5 letters (p = 0.004), with regression of exudation in 24 eyes (82.7%). Baseline CNV was classified into tree-in-bud (16 eyes), medusa (9 eyes), or sea-fan (4 eyes) pattern. At 6 months, no abnormal blood flow was observed in CNV in 13 eyes. Eyes with complete regression or evolution towards an indistinct pattern showed more often a complete regression of exudation than eyes with unchanged pattern (p = 0.007). The mean CNV surface significantly decreased from 0.19 to 0.08 mm2 (p < 0.0001).


An unchanged pattern was more often associated with exudation persistence, while a complete regression or evolution towards indistinct pattern was always associated with vascular inactivity. However, variable changes in mCNV were observed after anti-VEGF. Thus, OCT-A could be more useful in the diagnosis than in the follow-up of mCNV.


Myopia Choroidal neovascularization Anti-VEGF Ranibizumab OCT-angiography 


Compliance with ethical standards

Conflict of interest

Salomon Y. Cohen is a consultant for Allergan, Bayer, Novartis, Roche, Thea, and Tilak. Sandrine Tabary is a consultant for Bayer. Ala El Amen declares that he has no conflict of interest. Sarah Mrejen is a consultant for Allergan, Bayer, and Novartis. Gabriel Quentel is a consultant for Novartis. Audrey Giocanti-Auregan is a consultant for Allergan, Bayer, Novartis, and Optos Plc.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Agreement to perform the study was given by the Ethical Committee of the Federation France Macula.


  1. 1.
    Hotchkiss ML, Fine SL (1981) Pathologic myopia and choroidal neovascularization. Am J Ophthalmol 91:177–183CrossRefPubMedGoogle Scholar
  2. 2.
    Wong TY, Ferreira A, Hughes R, Carter G, Mitchell P (2014) Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol 157:9–25CrossRefPubMedGoogle Scholar
  3. 3.
    Neelam K, Cheung CM, Ohno-Matsui K, Lai TY, Wong TY (2012) Choroidal neovascularization in pathological myopia. Prog Retin Eye Res 31:495–525CrossRefPubMedGoogle Scholar
  4. 4.
    Ikuno Y (2017) Overview of the complications of high myopia. Retina 37:2347–2351CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen SY, Laroche A, Leguen Y, Soubrane G, Coscas G (1996) Etiology of choroidal neovascularization in young patients. Ophthalmology 103:1241–1244CrossRefPubMedGoogle Scholar
  6. 6.
    Yoshida T, Ohno-Matsui K, Yasuzumi K, Kojima A, Shimada N, Futagami S, Tokoro T, Mochizuki M (2003) Myopic choroidal neovascularization: a 10 year follow-up. Ophthalmology 110:1297–1305CrossRefPubMedGoogle Scholar
  7. 7.
    Leveziel N, Caillaux V, Bastuji-Garin S, Zmuda M, Souied EH (2013) Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization. Am J Ophthalmol 155:913–919CrossRefPubMedGoogle Scholar
  8. 8.
    Ores R, Puche N, Querques G, Blanco-Garavito R, Merle B, Coscas G, Oubraham H, Semoun O, Souied EH (2014) Gray hyper-reflective subretinal exudative lesions in exudative age-related macular degeneration. Am J Ophthalmol 158:354–361CrossRefPubMedGoogle Scholar
  9. 9.
    Dansingani KK, Tan AC, Gilani F, Phasukkijwatana N, Novais E, Querques L, Waheed NK, Duker JS, Querques G, Yannuzzi LA, Sarraf D, Freund KB (2016) Subretinal hyperreflective material imaged with optical coherence tomography angiography. Am J Ophthalmol 169:235–248CrossRefPubMedGoogle Scholar
  10. 10.
    Bruyère E, Caillaux V, Cohen SY, Martiano D, Ores R, Puche N, Souied EH (2015) Spectral-domain optical coherence tomography of subretinal hyperreflective exudation in myopic choroidal neovascularization. Am J Ophthalmol 160:749–758CrossRefPubMedGoogle Scholar
  11. 11.
    Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229CrossRefPubMedGoogle Scholar
  12. 12.
    Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E, Wilkins JR, Coker JG, Schuman JS, Swanson EA, Fujimoto JG (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270CrossRefPubMedGoogle Scholar
  13. 13.
    Rosenfeld PJ (2016) Optical coherence tomography and the development of antiangiogenic therapies in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 57:OCT14–OCT26CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    de Carlo TE, Bonini Filho MA, Chin AT, Adhi M, Ferrara D, Baumal CR, Witkin AJ, Reichel E, Duker JS, Waheed NK (2015) Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology 122:1228–1238CrossRefPubMedGoogle Scholar
  15. 15.
    El Ameen A, Cohen SY, Semoun O, Miere A, Srour M, Quaranta-El Maftouhi M, Oubraham H, Blanco-Garavito R, Querques G, Souied EH (2015) Type 2 neovascularization secondary to age related macular degeneration imaged by optical coherence tomography angiography. Retina 35:2212–2218CrossRefPubMedGoogle Scholar
  16. 16.
    Bruyère E, Miere A, Cohen SY, Martiano D, Sikorav A, Popeanga A, Semoun O, Querques G, Souied EH (2017) Neovascularization secondary to high myopia imaged by optical coherence tomography angiography. Retina 37:2095–2101CrossRefPubMedGoogle Scholar
  17. 17.
    Querques L, Giuffrè C, Corvi F, Zucchiatti I, Carnevali A, De Vitis LA, Querques G, Bandello F (2017) Optical coherence tomography angiography of myopic choroidal neovascularisation. Br J Ophthalmol 101:609–615CrossRefPubMedGoogle Scholar
  18. 18.
    Miere A, Butori P, Cohen SY, Semoun O, Capuano V, Jung C, Souied EH (2017) Vascular remodeling of choroidal neovascularization after anti-vascular endothelial growth factor therapy visualized on optical coherence tomography angiography. Retina Nov 23Google Scholar
  19. 19.
    Coscas GJ, Lupidi M, Coscas F, Cagini C, Souied EH (2015) Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge. Retina 35:2219–2228CrossRefPubMedGoogle Scholar
  20. 20.
    Liang MC, de Carlo TE, Baumal CR, Reichel E, Waheed NK, Duker JS, Witkin AJ (2016) Correlation of spectral domain optical coherence tomography angiography and clinical activity in neovascular age-related macular degeneration. Retina 36:2265–2273CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng Y, Li Y, Huang X, Qu Y.(2017) Application of optical coherence tomography angiography to assess anti-vascular endothelial growth factor therapy in myopic choroidal neovascularization. Retina Dec 18.
  22. 22.
    Wolf S, Balciuniene VJ, Laganovska G, Menchini U, Ohno-Matsui K, Sharma T, Wong TY, Silva R, Pilz S, Gekkieva M, RADIANCE Study Group (2014) RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology 121:682–692CrossRefPubMedGoogle Scholar
  23. 23.
    Ohno-Matsui K, Kawasaki R, Jonas JB, Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM, Verhoeven VJ, Klaver CC, Moriyama M, Shinohara K, Kawasaki Y, Yamazaki M, Meuer S, Ishibashi T, Yasuda M, Yamashita H, Sugano A, Wang JJ, Mitchell P, Wong TY, META-analysis for Pathologic Myopia (META-PM) Study Group (2015) International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol 159:877–883CrossRefPubMedGoogle Scholar
  24. 24.
    Ikuno Y, Ohno-Matsui K, Wong TY, Korobelnik JF, Vitti R, Li T, Stemper B, Asmus F, Zeitz O, Ishibashi T, Investigators MYRROR (2015) Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study. Ophthalmology 122:1220–1227CrossRefPubMedGoogle Scholar
  25. 25.
    Karagiannis D, Kontadakis GA, Kaprinis K, Giarmoukakis A, Georgalas I, Parikakis EA, Tsilimbaris MK (2017) Treatment of myopic choroidal neovascularization with intravitreal ranibizumab injections: the role of age. Clin Ophthalmol 11:1197–1201CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yoshida T, Ohno-Matsui K, Ohtake Y, Takashima T, Futagami S, Baba T, Yasuzumi K, Tokoro T, Mochizuki M (2002) Long-term visual prognosis of choroidal neovascularization in high myopia: a comparison between age groups. Ophthalmology 109:712–719CrossRefPubMedGoogle Scholar
  27. 27.
    Cohen SY, Nghiem-Buffet S, Grenet T, Dubois L, Ayrault S, Fajnkuchen F, Delahaye-Mazza C, Quentel G, Tadayoni R (2015) Long-term variable outcome of myopic choroidal neovascularization treated with ranibizumab. Jpn J Ophthalmol 59:36–42CrossRefPubMedGoogle Scholar
  28. 28.
    Yang HS, Kim JG, Kim JT, Joe SG (2013) Prognostic factors of eyes with naïve subfoveal myopic choroidal neovascularization after intravitreal bevacizumab. Am J Ophthalmol 156:1201–1210CrossRefPubMedGoogle Scholar
  29. 29.
    Lai TY, Luk FO, Lee GK, Lam DS (2012) Long-term outcome of intravitreal anti-vascular endothelial growth factor therapy with bevacizumab or ranibizumab as primary treatment for subfoveal myopic choroidal neovascularization. Eye (Lond) 26:1004–1011CrossRefGoogle Scholar
  30. 30.
    Ruiz-Moreno JM, Montero JA, Araiz J, Arias L, García-Layana A, Carneiro A, Figueroa MS, Silva R (2015) Intravitreal antivascular endothelial growth factor therapy for choroidal neovascularization secondary to pathologic myopia: six years outcome. Retina 35:2450–2456CrossRefPubMedGoogle Scholar
  31. 31.
    Oishi A, Yamashiro K, Tsujikawa A, Ooto S, Tamura H, Nakata I, Miyake M, Yoshimura N (2013) Long-term effect of intravitreal injection of anti VEGF agent for visual acuity and chorioretinal atrophy progression in myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 251:1–7CrossRefPubMedGoogle Scholar
  32. 32.
    Gharbiya M, Cruciani F, Mariotti C, Grandinetti F, Marenco M, Cacace V (2015) Choroidal thickness changes after intravitreal antivascular endothelial growth factor therapy for age-related macular degeneration: ranibizumab versus aflibercept. J Ocul Pharmacol Ther 31:357–362CrossRefPubMedGoogle Scholar
  33. 33.
    Kim JH, Lee TG, Chang YS, Kim CG, Cho SW (2016) Short-term choroidal thickness changes in patients treated with either ranibizumab or aflibercept: a comparative study. Br J Ophthalmol 100:1634–1639CrossRefPubMedGoogle Scholar
  34. 34.
    Leveziela N, Quaranta-El Maftouhib M, Lalloumc F, Souied É, Cohen SY, Fédération France Macula (2014) Treatment of myopic choroidal neovascularization: recommendations of the Fédération France Macula. J Fr Ophtalmol 37:320–328CrossRefPubMedGoogle Scholar
  35. 35.
    Cohen SY, Mrejen S (2017) Imaging of exudative age-related macular degeneration: toward a shift in the diagnostic paradigm? Retina 37:1625–1626CrossRefPubMedGoogle Scholar
  36. 36.
    Miyata M, Ooto S, Hata M, Yamashiro K, Tamura H, Akagi-Kurashige Y, Nakanishi H, Ueda-Arakawa N, Takahashi A, Kuroda Y, Wakazono T, Yoshikawa M, Yoshimura N (2016) Detection of myopic choroidal neovascularization using optical coherence tomography angiography. Am J Ophthalmol 165:108–114CrossRefPubMedGoogle Scholar
  37. 37.
    Ploner SB, Moult EM, Choi W, Waheed NK, Lee B, Novais EA, Cole ED, Potsaid B, Husvogt L, Schottenhamml J, Maier A, Rosenfeld PJ, Duker JS, Hornegger J, Fujimoto JG (2016) Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina 36(Suppl 1):S118–S126CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, Potsaid B, Liu JJ, Lu CD, Kraus MF, Fujimoto JG, Huang D (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu B, Bao L, Zhang J (2016) Optical coherence tomography angiography of pathological myopia sourced and idiopathic choroidal neovascularization with follow-up. Medicine (Baltimore) 95:e3264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ophthalmology Center for Imaging and LaserParisFrance
  2. 2.Department of OphthalmologyParis Est UniversityCreteilFrance
  3. 3.Department of OphthalmologyHôpital Avicenne, AP-HP and Paris 13 UniversityBobignyFrance

Personalised recommendations