Skip to main content

Advertisement

Log in

The diagnostic accuracy of chromatic pupillary light responses in diseases of the outer and inner retina

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare the chromatic pupillary light responses (PLR) in healthy subjects with those from patients with diseases of the outer or inner retina under various stimulus conditions, and to ascertain the parameters required to optimally distinguish between disease and control groups.

Methods

Fifteen patients with retinitis pigmentosa (RP), 19 patients with optic nerve disease (ON), and 16 healthy subjects were enrolled in this prospective study. ON included optic neuritis (NNO) and non-arteritic anterior ischemic optic neuropathy (NAION). For each subject, the PLR was recorded, to red, yellow, green, and blue stimuli for durations of 4 and 12 s, and for stimulus intensities of 4 lx and 28 lx.

Results

Comparison between control and RP or ON patient results showed that responses after stimulus onset were significantly different for most stimulus conditions, but the post-stimulus amplitudes at 3 s and 7 s after light extinction were not. On the other hand, the difference between the ON and RP groups was significant only for post-stimuli time-points and only for blue stimuli. Differences between responses to blue and red were significantly different, predominantly at post stimulus time-points. A ROC analysis revealed that the maximal constriction amplitudes to a 4 lx, 4 s yellow stimulus are significantly different in ON vs RP patients, and the responses to a 4 s, 28 lx blue stimulus at 7 s post-stimulus are significantly different in controls vs ON vs RP patients with a high specificity.

Conclusions

Pupillary light responses to blue light in healthy, RP, and ON subjects are significantly different from one another. The optimal stimuli for future protocols was found to be a 4 s blue stimulus at 28 lx, and a 4 s yellow stimulus at 4 lx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3):326–349. doi:10.1002/cne.20970

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res 47(7):946–954. doi:10.1016/j.visres.2006.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Provencio I, Cooper HM, Foster RG (1998) Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395(4):417–439

    Article  CAS  PubMed  Google Scholar 

  5. Hannibal J, Fahrenkrug J (2002) Melanopsin: a novel photopigment involved in the photoentrainment of the brain’s biological clock? Ann Med 34(5):401–407

    Article  CAS  PubMed  Google Scholar 

  6. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95(1):340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460(3):380–393. doi:10.1002/cne.10652

    Article  PubMed  Google Scholar 

  8. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  9. Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433(7027):741–745. doi:10.1038/nature03344

    Article  CAS  PubMed  Google Scholar 

  10. Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433(7027):745–749. doi:10.1038/nature03345

    Article  CAS  PubMed  Google Scholar 

  11. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754

    Article  CAS  PubMed  Google Scholar 

  12. Gamlin PD (2006) The pretectum: connections and oculomotor-related roles. Prog Brain Res 151:379–405. doi:10.1016/S0079-6123(05)51012-4

    Article  PubMed  Google Scholar 

  13. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4(6):621–626. doi:10.1038/88443

    Article  CAS  PubMed  Google Scholar 

  14. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81. doi:10.1038/nature01761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A (2009) Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 116(8):1564–1573. doi:10.1016/j.ophtha.2009.02.007

    Article  PubMed  Google Scholar 

  16. McDougal DH, Gamlin PD (2010) The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vis Res 50(1):72–87. doi:10.1016/j.visres.2009.10.012

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ishikawa H, Onodera A, Asakawa K, Nakadomari S, Shimizu K (2012) Effects of selective-wavelength block filters on pupillary light reflex under red and blue light stimuli. Jpn J Ophthalmol 56(2):181–186. doi:10.1007/s10384-011-0116-1

    Article  PubMed  Google Scholar 

  18. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070. doi:10.1126/science.1069609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604):245–247. doi:10.1126/science.1077293

    Article  CAS  PubMed  Google Scholar 

  20. Kawasaki A, Kardon RH (2007) Intrinsically photosensitive retinal ganglion cells. J Neuroophthalmol 27(3):195–204. doi:10.1097/WNO.0b013e31814b1df9

    Article  PubMed  Google Scholar 

  21. Young RS, Kimura E (2008) Pupillary correlates of light-evoked melanopsin activity in humans. Vis Res 48(7):862–871. doi:10.1016/j.visres.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  22. Park JC, Moura AL, Raza AS, Rhee DW, Kardon RH, Hood DC (2011) Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci 52(9):6624–6635. doi:10.1167/iovs.11-7586

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kawasaki A, Crippa SV, Kardon R, Leon L, Hamel C (2012) Characterization of pupil responses to blue and red light stimuli in autosomal dominant retinitis pigmentosa due to NR2E3 mutation. Invest Ophthalmol Vis Sci 53(9):5562–5569. doi:10.1167/iovs.12-10230

    Article  CAS  PubMed  Google Scholar 

  24. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A (2011) Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology 118(2):376–381. doi:10.1016/j.ophtha.2010.06.033

    Article  PubMed  Google Scholar 

  25. Kankipati L, Girkin CA, Gamlin PD (2011) The post-illumination pupil response is reduced in glaucoma patients. Invest Ophthalmol Vis Sci 52(5):2287–2292. doi:10.1167/iovs.10-6023

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leon L, Crippa SV, Borruat FX, Kawasaki A (2012) Differential effect of long versus short wavelength light exposure on pupillary re-dilation in patients with outer retinal disease. Clin Exp Ophthalmol 40(1):e16–e24. doi:10.1111/j.1442-9071.2011.02665.x

    Article  PubMed  Google Scholar 

  27. Kawasaki A, Collomb S, Leon L, Munch M (2014) Pupil responses derived from outer and inner retinal photoreception are normal in patients with hereditary optic neuropathy. Exp Eye Res 120:161–166. doi:10.1016/j.exer.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  28. Moura AL, Nagy BV, La Morgia C, Barboni P, Oliveira AG, Salomao SR, Berezovsky A, de Moraes-Filho MN, Chicani CF, Belfort R Jr, Carelli V, Sadun AA, Hood DC, Ventura DF (2013) The pupil light reflex in Leber’s hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells. Invest Ophthalmol Vis Sci 54(7):4471–4477. doi:10.1167/iovs.12-11137

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kankipati L, Girkin CA, Gamlin PD (2010) Post-illumination pupil response in subjects without ocular disease. Invest Ophthalmol Vis Sci 51(5):2764–2769. doi:10.1167/iovs.09-4717

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM (2009) Melanopsin bistability: a fly’s eye technology in the human retina. PLoS ONE 4(6):e5991. doi:10.1371/journal.pone.0005991

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A, Marshall KA, Banfi S, Chung DC, Morgan JI, Hauck B, Zelenaia O, Zhu X, Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, McDonnell JW, Leroy BP, Simonelli F, Bennett J (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374(9701):1597–1605. doi:10.1016/S0140-6736(09)61836-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B 278(1711):1489–1497. doi:10.1098/rspb.2010.1747

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank W Durst for his help with the calibration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Richter.

Ethics declarations

Funding and grants

None.

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, P., Wilhelm, H., Peters, T. et al. The diagnostic accuracy of chromatic pupillary light responses in diseases of the outer and inner retina. Graefes Arch Clin Exp Ophthalmol 255, 519–527 (2017). https://doi.org/10.1007/s00417-016-3496-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3496-6

Keywords

Navigation