Skip to main content

Advertisement

Log in

In-vivo mapping of drusen by fundus autofluorescence and spectral-domain optical coherence tomography imaging

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine fundus autofluorescence (FAF) signal variations and corresponding microstructural alterations on spectral-domain optical coherence tomography (SD-OCT) in areas of funduscopically visible drusen associated with age-related macular degeneration (AMD).

Methods

Thirty eyes from 22 patients with geographic atrophy (GA) secondary to AMD (median age 74, range 64–87 years), who had undergone retinal imaging including color fundus photography (CFP), FAF and SD-OCT (Spectralis HRA+OCT; Heidelberg Engineering GmbH, Heidelberg, Germany) were retrospectively analyzed. In each eye, at least one druse (≥63 μm) in the perilesional zone of GA recorded on CFP was analyzed. Relative FAF intensities and alterations in SD-OCT bands at the site of each druse were evaluated.

Results

A total of 73 drusen were analyzed, which were associated with heterogeneous corresponding alterations on FAF and SD-OCT. The FAF signal was normal, increased, decreased or not evaluable in 32 (44 %), 27 (37 %), 12 (16 %), and 2 (3 %) drusen, respectively. Focal hyperreflectivity overlying drusen was most frequently spatially confined to increased FAF (present in 9 (33 %) of 27 drusen with increased FAF). Outer nuclear layer thinning and choroidal hyperreflectivity were associated with decreased FAF (present in 7 [58 %] of 12 and 6 [50 %] of 12 drusen with decreased FAF, respectively).

Conclusions

The appearance of soft drusen on CFP does not allow for differentiation between preserved and markedly compromised outer retinal integrity, including incipient atrophy and focal neurosensory alterations of reflectivity overlying extracellular sub-retinal pigment epithelium (RPE) deposits. Multimodal imaging reveals a broad spectrum of microstructural changes, which may reflect different stages in the evolution of drusen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Age-Related Eye Disease Study Research Group (2001) The Age-related Eye disease study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the age-related Eye disease study report number 6. Am J Ophthalmol 132:668–681

    Article  Google Scholar 

  2. Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L (1991) The Wisconsin age-related maculopathy grading system. Ophthalmology 98:1128–1134

    Article  PubMed  CAS  Google Scholar 

  3. Spaide RF, Curcio C (2010) Drusen characterization with multimodal imaging. Retina 30:1441–1454

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren CM (2014) Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology 121:1079–1091

    Article  PubMed  Google Scholar 

  5. Klein ML, Ferris FL 3rd, Armstrong J, Hwang TS, Chew EY, Bressler SB et al (2008) Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology 115:1026–1031

    Article  PubMed  Google Scholar 

  6. Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye 2(Pt 5):552–577

    Article  PubMed  Google Scholar 

  7. Gass JD (1973) Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 90:206–217

    Article  PubMed  CAS  Google Scholar 

  8. Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS et al (2005) A simplified severity scale for age-related macular degeneration: AREDS report No. 18. Arch Ophthalmol 123:1570–1574

    Article  PubMed  Google Scholar 

  9. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K et al (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120:844–851

    Article  PubMed  Google Scholar 

  10. Yehoshua Z, Wang F, Rosenfeld PJ, Penha FM, Feuer WJ, Gregori G (2011) Natural history of drusen morphology in age-related macular degeneration using spectral domain optical coherence tomography. Ophthalmology 118:2434–2441

    Article  PubMed  PubMed Central  Google Scholar 

  11. Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK (2000) Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 41:496–504

    PubMed  CAS  Google Scholar 

  12. Lois N, Owens SL, Coco R, Hopkins J, Fitzke FW, Bird AC (2002) Fundus autofluorescence in patients with age-related macular degeneration and high risk of visual loss. Am J Ophthalmol 133:341–349

    Article  PubMed  Google Scholar 

  13. Sunness JS, Ziegler MD, Applegate CA (2006) Issues in quantifying atrophic macular disease using retinal autofluorescence. Retina 26:666–672

    Article  PubMed  Google Scholar 

  14. Khanifar AA, Koreishi AF, Izatt JA, Toth CA (2008) Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 115:1883–1890

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leuschen JN, Schuman SG, Winter KP, McCall MN, Wong WT, Chew EY et al (2013) Spectral-domain optical coherence tomography characteristics of intermediate age-related macular degeneration. Ophthalmology 120:140–150

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schuman SG, Koreishi AF, Farsiu S, Jung SH, Izatt JA, Toth CA (2009) Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with spectral-domain optical coherence tomography. Ophthalmology 116:488–496, e2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sadigh S, Cideciyan AV, Sumaroka A, Huang WC, Luo X, Swider M et al (2013) Abnormal thickening as well as thinning of the photoreceptor layer in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 54:1603–1612

    Article  PubMed  Google Scholar 

  18. Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR (2013) Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology 120:2656–2665

    Article  PubMed  Google Scholar 

  19. Landa G, Rosen RB, Pilavas J, Garcia PM (2012) Drusen characteristics revealed by spectral-domain optical coherence tomography and their corresponding fundus autofluorescence appearance in dry age-related macular degeneration. Ophthalmic Res 47:81–86

    Article  PubMed  Google Scholar 

  20. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–729

    PubMed  CAS  Google Scholar 

  21. Von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412

    Article  Google Scholar 

  22. Schmitz-Valckenberg S, Jorzik J, Unnebrink K, Holz FG (2002) Analysis of digital scanning laser ophthalmoscopy fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 240:73–78

    Article  PubMed  Google Scholar 

  23. Schmitz-Valckenberg S, Brinkmann CK, Alten F, Herrmann P, Stratmann NK, Göbel AP et al (2011) Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 52:7640–7646

    Article  PubMed  Google Scholar 

  24. Helb HM, Charbel Issa P, Fleckenstein M, Schmitz-Valckenberg S, Scholl HP, Meyer CH et al (2010) Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography. Acta Ophthalmol 88:842–849

    Article  PubMed  Google Scholar 

  25. Fleckenstein M, Charbel Issa P, Helb HM, Schmitz-Valckenberg S, Finger RP, Scholl HP et al (2008) High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 49:4137–4144

    Article  PubMed  Google Scholar 

  26. Pircher M, Gotzinger E, Findl O, Michels S, Geitzenauer W, Leydolt C et al (2006) Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 47:5487–5494

    Article  PubMed  Google Scholar 

  27. Querques G, Georges A, Ben Moussa N, Sterkers M, Souied EH (2014) Appearance of regressing drusen on optical coherence tomography in age-related macular degeneration. Ophthalmology 121:173–179

    Article  PubMed  Google Scholar 

  28. Farsiu S, Chiu SJ, O’Connell RV, Folgar FA, Yuan E, Izatt JA et al (2014) Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology 121:162–172

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yehoshua Z, Gregori G, Sadda SR, Penha FM, Goldhardt R, Nittala MG et al (2013) Comparison of drusen area detected by spectral domain optical coherence tomography and color fundus imaging. Invest Ophthalmol Vis Sci 54:2429–2434

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bellmann C, Holz FG, Schapp O, Völcker HE, Otto TP (1997) Topography of fundus autofluorescence with a new confocal scanning laser ophthalmoscope. Ophthalmologe 94:385–391

    Article  PubMed  CAS  Google Scholar 

  31. Bindewald A, Bird AC, Dandekar SS, Dolar-Szczasny J, Dreyhaupt J, Fitzke FW et al (2005) Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 46:3309–3314

    Article  PubMed  Google Scholar 

  32. Einbock W, Moessner A, Schnurrbusch UE, Holz FG, Wolf S (2005) Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study. Graefes Arch Clin Exp Ophthalmol 243:300–305

    Article  PubMed  Google Scholar 

  33. Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology 110:392–399

    Article  PubMed  Google Scholar 

  34. Toy BC, Krishnadev N, Indaram M, Cunningham D, Cukras CA, Chew EY et al (2013) Drusen regression is associated with local changes in fundus autofluorescence in intermediate age-related macular degeneration. Am J Ophthalmol 156:532–542, e1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Department of Ophthalmology, University of Bonn, has received research material from Carl Zeiss Meditec, Heidelberg Engineering, and Optos PLC.

Monika Fleckenstein has received honoraria from Heidelberg Engineering and is the inventor designated on a patent application (US2012029299 ‘Methods of Diagnosis and Treating Vascular Associated Maculopathy and Symptoms Thereof’)

Frank G. Holz receives compensation as a consultant for Heidelberg Engineering and Optos.

Steffen Schmitz-Valckenberg has received honoraria from Heidelberg Engineering and Optos PLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Schmitz-Valckenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göbel, A.P., Fleckenstein, M., Heeren, T.F.C. et al. In-vivo mapping of drusen by fundus autofluorescence and spectral-domain optical coherence tomography imaging. Graefes Arch Clin Exp Ophthalmol 254, 59–67 (2016). https://doi.org/10.1007/s00417-015-3012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3012-4

Keywords

Navigation