Advertisement

Artificial intelligence as an emerging technology in the current care of neurological disorders

  • Urvish K. PatelEmail author
  • Arsalan Anwar
  • Sidra Saleem
  • Preeti Malik
  • Bakhtiar Rasul
  • Karan Patel
  • Robert Yao
  • Ashok Seshadri
  • Mohammed Yousufuddin
  • Kogulavadanan Arumaithurai
Review

Abstract

Background

Artificial intelligence (AI) has influenced all aspects of human life and neurology is no exception to this growing trend. The aim of this paper is to guide medical practitioners on the relevant aspects of artificial intelligence, i.e., machine learning, and deep learning, to review the development of technological advancement equipped with AI, and to elucidate how machine learning can revolutionize the management of neurological diseases. This review focuses on unsupervised aspects of machine learning, and how these aspects could be applied to precision neurology to improve patient outcomes. We have mentioned various forms of available AI, prior research, outcomes, benefits and limitations of AI, effective accessibility and future of AI, keeping the current burden of neurological disorders in mind.

Discussion

The smart device system to monitor tremors and to recognize its phenotypes for better outcomes of deep brain stimulation, applications evaluating fine motor functions, AI integrated electroencephalogram learning to diagnose epilepsy and psychological non-epileptic seizure, predict outcome of seizure surgeries, recognize patterns of autonomic instability to prevent sudden unexpected death in epilepsy (SUDEP), identify the pattern of complex algorithm in neuroimaging classifying cognitive impairment, differentiating and classifying concussion phenotypes, smartwatches monitoring atrial fibrillation to prevent strokes, and prediction of prognosis in dementia are unique examples of experimental utilizations of AI in the field of neurology. Though there are obvious limitations of AI, the general consensus among several nationwide studies is that this new technology has the ability to improve the prognosis of neurological disorders and as a result should become a staple in the medical community.

Conclusion

AI not only helps to analyze medical data in disease prevention, diagnosis, patient monitoring, and development of new protocols, but can also assist clinicians in dealing with voluminous data in a more accurate and efficient manner.

Keywords

Artificial intelligence Machine learning Deep learning Neurological disorders Stroke Epilepsy SUDEP Movement disorders Concussion Alzheimer’s disease Technology 

Notes

Author contributions

Conceptualization, UP; methodology: none; formal analysis and investigation, UP, AA, SS; writing—original draft preparation, KA, AA, SS, UP; writing—review and editing, PM, KP, RY, AS, MY, BR; supervision, KA; project administration, UP; resources, UP; funding acquisition, none.

Funding

The study had no internal or external funding source.

Compliance with ethical standards

Conflicts of interest

The authors report no disclosures relevant to the manuscript. The authors declare that there is no conflict of interest. Robert Yao is the founder and CEO of EpiFinder, Inc.

Informed consent

This review article does not have direct or indirect involvement of humans or animals, so permission from IRB or ethics committee was not applicable or required.

References

  1. 1.
    Cukier K (2019) Ready for Robots? How to think about the future of AI. Foreign Affairs 98:192Google Scholar
  2. 2.
    Myers A (2011) Stanford's John McCarthy, seminal figure of artificial intelligence, dies at 84. Stanford Report. https://news.stanford.edu/news/2011/october/john-mccarthy-obit-102511.html. Accessed 14 Jul 2019
  3. 3.
    Russell SJ, Norvig P (2010) Artificial intelligence—a modern approach, 3rd edn. Pearson Education Inc, Upper Saddle River, New JerseyGoogle Scholar
  4. 4.
    Konar A (1999) Artificial intelligence and soft computing—behavioral and cognitive modeling of the human brain. CRC Press, Boca Raton. https://doi.org/10.1201/9781315219738
  5. 5.
    Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387. https://doi.org/10.1561/2000000039
  6. 6.
    Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern Part C 40(1):1–12. https://doi.org/10.1109/TSMCC.2009.2032660
  7. 7.
    D A (2018) Artificial intelligence for authentic engagement. Syneos health communications. https://syneoshealthcommunications.com/perspectives/artificial-intelligence. Accessed 4 Apr 2018
  8. 8.
    Henricks WH (2011) "Meaningful use" of electronic health records and its relevance to laboratories and pathologists. J Pathol Inform 2:7.  https://doi.org/10.4103/2153-3539.76733 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Flores M, Glusman G, Brogaard K, Price ND, Hood L (2013) P4 medicine: how systems medicine will transform the healthcare sector and society. Personal Med 10(6):565–576.  https://doi.org/10.2217/pme.13.57 CrossRefGoogle Scholar
  10. 10.
    Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gonzalez-Medina D, Gosselin R, Grainger R, Grant B, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Laden F, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Levinson D, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mock C, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O'Donnell M, O'Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiebe N, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, AlMazroa MA, Memish ZA (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2197–2223.  https://doi.org/10.1016/s0140-6736(12)61689-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Gooch CL, Pracht E, Borenstein AR (2017) The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol 81(4):479–484.  https://doi.org/10.1002/ana.24897 CrossRefPubMedGoogle Scholar
  12. 12.
    Onorati F, Regalia G, Caborni C, Migliorini M, Bender D, Poh MZ, Frazier C, Kovitch Thropp E, Mynatt ED, Bidwell J, Mai R, LaFrance WC Jr, Blum AS, Friedman D, Loddenkemper T, Mohammadpour-Touserkani F, Reinsberger C, Tognetti S, Picard RW (2017) Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia 58(11):1870–1879.  https://doi.org/10.1111/epi.13899 CrossRefPubMedGoogle Scholar
  13. 13.
    Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR (2018) Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health 3(4):e000798.  https://doi.org/10.1136/bmjgh-2018-000798 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mesko B (2017) The role of artificial intelligence in precision medicine. Expert Rev Precis Med Drug Dev 2(5):239–241.  https://doi.org/10.1080/23808993.2017.1380516 CrossRefGoogle Scholar
  15. 15.
    Hassabis D, Kumaran D, Summerfield C, Botvinick M (2017) Neuroscience-inspired artificial intelligence. Neuron 95(2):245–258.  https://doi.org/10.1016/j.neuron.2017.06.011 CrossRefPubMedGoogle Scholar
  16. 16.
    Ganapathy K, Abdul SS, Nursetyo AA (2018) Artificial intelligence in neurosciences: a clinician's perspective. Neurol India 66(4):934–939.  https://doi.org/10.4103/0028-3886.236971 CrossRefPubMedGoogle Scholar
  17. 17.
    Varghese J, Niewohner S, Soto-Rey I, Schipmann-Miletic S, Warneke N, Warnecke T, Dugas M (2019) A smart device system to identify new phenotypical characteristics in movement disorders. Front Neurol 10:48.  https://doi.org/10.3389/fneur.2019.00048 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li KHC, White FA, Tipoe T, Liu T, Wong MC, Jesuthasan A, Baranchuk A, Tse G, Yan BP (2019) The current state of mobile phone apps for monitoring heart rate, heart rate variability, and atrial fibrillation: narrative review. JMIR mHealth uHealth 7(2):e11606.  https://doi.org/10.2196/11606 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW (2019) A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans Med Imaging.  https://doi.org/10.1109/tmi.2019.2901445 CrossRefPubMedGoogle Scholar
  20. 20.
    Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A (2017) Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. Stroke 48(5):1416–1419.  https://doi.org/10.1161/strokeaha.116.016281 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Poh MZ, Loddenkemper T, Swenson NC, Goyal S, Madsen JR, Picard RW (2010) Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. Conf Proc IEEE Eng Med Biol Soc 2010:4415–4418.  https://doi.org/10.1109/iembs.2010.5625988 CrossRefPubMedGoogle Scholar
  22. 22.
    Okazaki EM, Yao R, Sirven JI, Crepeau AZ, Noe KH, Drazkowski JF, Hoerth MT, Salinas E, Csernak L, Mehta N (2018) Usage of EpiFinder clinical decision support in the assessment of epilepsy. Epilepsy Behav 82:140–143.  https://doi.org/10.1016/j.yebeh.2018.03.018 CrossRefPubMedGoogle Scholar
  23. 23.
    Sarica A, Cerasa A, Quattrone A (2017) Random forest algorithm for the classification of neuroimaging data in Alzheimer's disease: a systematic review. Front Aging Neurosci 9:329.  https://doi.org/10.3389/fnagi.2017.00329 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C (2017) A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. NeuroImage 155:530–548.  https://doi.org/10.1016/j.neuroimage.2017.03.057 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32.  https://doi.org/10.1023/a:1010933404324 CrossRefGoogle Scholar
  26. 26.
    Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, Arabia G, Morelli M, Gilardi MC, Quattrone A (2014) Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. J Neurosci Methods 222:230–237.  https://doi.org/10.1016/j.jneumeth.2013.11.016 CrossRefPubMedGoogle Scholar
  27. 27.
    Amoroso N, La Rocca M, Monaco A, Bellotti R, Tangaro S (2018) Complex networks reveal early MRI markers of Parkinson’s disease. Med Image Anal 48:12–24.  https://doi.org/10.1016/j.media.2018.05.004 CrossRefPubMedGoogle Scholar
  28. 28.
    Brzezicki MA, Kobetić MD, Neumann S, Pennington C (2019) Diagnostic accuracy of frontotemporal dementia. An artificial intelligence-powered study of symptoms, imaging and clinical judgement. Adv Med Sci 64(2):292–302. https://doi.org/10.1016/j.advms.2019.03.002
  29. 29.
    Visscher RMS, Feddermann-Demont N, Romano F, Straumann D, Bertolini G (2019) Artificial intelligence for understanding concussion: Retrospective cluster analysis on the balance and vestibular diagnostic data of concussion patients. PLoS ONE 14(4):e0214525.  https://doi.org/10.1371/journal.pone.0214525 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, Ferranti SDd, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2018) Heart Disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492.  https://doi.org/10.1161/CIR.0000000000000558 CrossRefPubMedGoogle Scholar
  31. 31.
    Al Kasab S, Adams RJ, Debenham E, Jones DJ, Holmstedt CA (2017) Medical University of South Carolina Telestroke: a telemedicine facilitated network for stroke treatment in SOUTH CAROLINA-a progress report. Telemed J e-health 23(8):674–677.  https://doi.org/10.1089/tmj.2016.0229 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhai YK, Zhu WJ, Hou HL, Sun DX, Zhao J (2015) Efficacy of telemedicine for thrombolytic therapy in acute ischemic stroke: a meta-analysis. J Telemed Telecare 21(3):123–130.  https://doi.org/10.1177/1357633x15571357 CrossRefPubMedGoogle Scholar
  33. 33.
    Laghari FJ, Hammer MD (2017) Telestroke imaging: a review. J Neuroimaging 27(1):16–22.  https://doi.org/10.1111/jon.12402 CrossRefPubMedGoogle Scholar
  34. 34.
    Moradiya Y, Janjua N (2013) Presentation and outcomes of "wake-up strokes" in a large randomized stroke trial: analysis of data from the International Stroke Trial. J Stroke Cerebrovasc Dis 22(8):e286–292.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.07.016 CrossRefPubMedGoogle Scholar
  35. 35.
    Kamal H, Lopez V, Sheth SA (2018) Machine Learning in Acute Ischemic Stroke Neuroimaging. Frontiers in neurology 9 (945). 10.3389/fneur.2018.00945Google Scholar
  36. 36.
    Chan KL, Leng X, Zhang W, Dong W, Qiu Q, Yang J, Soo Y, Wong KS, Leung TW, Liu J (2019) Early identification of high-risk TIA or minor stroke using artificial neural network. Front Neurol 10:171.  https://doi.org/10.3389/fneur.2019.00171 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Thomalla G, Rossbach P, Rosenkranz M, Siemonsen S, Krutzelmann A, Fiehler J, Gerloff C (2009) Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol 65(6):724–732.  https://doi.org/10.1002/ana.21651 CrossRefPubMedGoogle Scholar
  38. 38.
    Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O, Kim JS, Breuer L, Singer OC, Warach S, Christensen S, Treszl A, Forkert ND, Galinovic I, Rosenkranz M, Engelhorn T, Kohrmann M, Endres M, Kang DW, Dousset V, Sorensen AG, Liebeskind DS, Fiebach JB, Fiehler J, Gerloff C (2011) DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol 10(11):978–986. https://doi.org/10.1016/s1474-4422(11)70192-2
  39. 39.
    Ebinger M, Galinovic I, Rozanski M, Brunecker P, Endres M, Fiebach JB (2010) Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a reliable tissue clock? Stroke 41(2):250–255.  https://doi.org/10.1161/strokeaha.109.568410 CrossRefPubMedGoogle Scholar
  40. 40.
    Emeriau S, Serre I, Toubas O, Pombourcq F, Oppenheim C, Pierot L (2013) Can diffusion-weighted imaging-fluid-attenuated inversion recovery mismatch (positive diffusion-weighted imaging/negative fluid-attenuated inversion recovery) at 3 Tesla identify patients with stroke at %3c4.5 hours? Stroke 44(6):1647–1651. https://doi.org/10.1161/strokeaha.113.001001
  41. 41.
    Koga M, Toyoda K, Kimura K, Yamamoto H, Sasaki M, Hamasaki T, Kitazono T, Aoki J, Seki K, Homma K, Sato S, Minematsu K (2014) THrombolysis for Acute Wake-up and unclear-onset Strokes with alteplase at 0.6 mg/kg (THAWS) Trial. Int J Stroke 9(8):1117–1124. https://doi.org/10.1111/ijs.12360
  42. 42.
    Thomalla G, Fiebach JB, Ostergaard L, Pedraza S, Thijs V, Nighoghossian N, Roy P, Muir KW, Ebinger M, Cheng B, Galinovic I, Cho TH, Puig J, Boutitie F, Simonsen CZ, Endres M, Fiehler J, Gerloff C (2014) A multicenter, randomized, double-blind, placebo-controlled trial to test efficacy and safety of magnetic resonance imaging-based thrombolysis in wake-up stroke (WAKE-UP). Int J Stroke 9(6):829–836.  https://doi.org/10.1111/ijs.12011 CrossRefPubMedGoogle Scholar
  43. 43.
    Xu Y, Nguyen D, Mohamed A, Carcel C, Li Q, Kutlubaev MA, Anderson CS, Hackett ML (2016) Frequency of a false positive diagnosis of epilepsy: a systematic review of observational studies. Seizure 41:167–174.  https://doi.org/10.1016/j.seizure.2016.08.005 CrossRefPubMedGoogle Scholar
  44. 44.
    Kr V, Rajagopalan SS, Bhardwaj S, Panda R, Reddam VR, Ganne C, Kenchaiah R, Mundlamuri RC, Kandavel T, Majumdar KK, Parthasarathy S, Sinha S, Bharath RD (2018) Machine learning detects EEG microstate alterations in patients living with temporal lobe epilepsy. Seizure 61:8–13.  https://doi.org/10.1016/j.seizure.2018.07.007 CrossRefGoogle Scholar
  45. 45.
    Vasta R, Cerasa A, Sarica A, Bartolini E, Martino I, Mari F, Metitieri T, Quattrone A, Gambardella A, Guerrini R, Labate A (2018) The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures. Epilepsy Behav 87:167–172.  https://doi.org/10.1016/j.yebeh.2018.09.008 CrossRefPubMedGoogle Scholar
  46. 46.
    Javidan M (2012) Electroencephalography in mesial temporal lobe epilepsy: a review. Epilepsy Res Treat 2012:17.  https://doi.org/10.1155/2012/637430 CrossRefGoogle Scholar
  47. 47.
    Milz P, Pascual-Marqui RD, Achermann P, Kochi K, Faber PL (2017) The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. Neuroimage 162:353–361.  https://doi.org/10.1016/j.neuroimage.2017.08.058 CrossRefPubMedGoogle Scholar
  48. 48.
    Khanna A, Pascual-Leone A, Michel CM, Farzan F (2015) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113.  https://doi.org/10.1016/j.neubiorev.2014.12.010 CrossRefPubMedGoogle Scholar
  49. 49.
    Pyrzowski J, Sieminski M, Sarnowska A, Jedrzejczak J, Nyka WM (2015) Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy. Sci Rep 5:16230.  https://doi.org/10.1038/srep16230 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    van Buren JM (1958) Some autonomic concomitants of ICTAL automatism: a study of temporal lobe attacks. Brain 81(4):505–528.  https://doi.org/10.1093/brain/81.4.505 CrossRefGoogle Scholar
  51. 51.
    Simon RP, Aminoff MJ, Benowitz NL (1984) Changes in plasma catecholamines after tonic–clonic seizures. Neurology 34(2):255–257.  https://doi.org/10.1212/wnl.34.2.255 CrossRefPubMedGoogle Scholar
  52. 52.
    Meierkord H, Shorvon S, Lightman SL (1994) Plasma concentrations of prolactin, noradrenaline, vasopressin and oxytocin during and after a prolonged epileptic seizure. Acta Neurol Scand 90(2):73–77CrossRefPubMedGoogle Scholar
  53. 53.
    Lesser RP (1996) Psychogenic seizures. Neurology 46(6):1499–1507.  https://doi.org/10.1212/wnl.46.6.1499 CrossRefPubMedGoogle Scholar
  54. 54.
    Krumholz A (1999) Nonepileptic seizures: diagnosis and management. Neurology 53(5 Suppl 2):S76–83PubMedGoogle Scholar
  55. 55.
    Bowman ES, Markand ON (1996) Psychodynamics and psychiatric diagnoses of pseudoseizure subjects. Am J Psychiatry 153(1):57–63.  https://doi.org/10.1176/ajp.153.1.57 CrossRefPubMedGoogle Scholar
  56. 56.
    Benbadis SR (2010) Psychogenic nonepileptic "seizures" or "attacks"? It's not just semantics: attacks. Neurology 75(1):84–86.  https://doi.org/10.1212/WNL.0b013e3181e6216f CrossRefPubMedGoogle Scholar
  57. 57.
    Bruni A, Martino I, Borzi G, Gambardella A, De Fazio P, Labate A (2017) The mystery of unexplained traumatic sudden falls. A clinical case that adds a new feasible cause. Neurol Sci 38(6):1115–1117. https://doi.org/10.1007/s10072-017-843-7Google Scholar
  58. 58.
    Cerasa A, Fasano A, Morgante F, Koch G, Quattrone A (2014) Maladaptive plasticity in levodopa-induced dyskinesias and tardive dyskinesias: old and new insights on the effects of dopamine receptor pharmacology. Front Neurol 5:49.  https://doi.org/10.3389/fneur.2014.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S, Cantu RC, Cassidy D, Echemendia RJ, Castellani RJ, Davis GA, Ellenbogen R, Emery C, Engebretsen L, Feddermann-Demont N, Giza CC, Guskiewicz KM, Herring S, Iverson GL, Johnston KM, Kissick J, Kutcher J, Leddy JJ, Maddocks D, Makdissi M, Manley GT, McCrea M, Meehan WP, Nagahiro S, Patricios J, Putukian M, Schneider KJ, Sills A, Tator CH, Turner M, Vos PE (2017) Consensus statement on concussion in sport—the 5%3csup%3eth%3c/sup%3e international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med 51(11):838.  https://doi.org/10.1136/bjsports-2017-097699 CrossRefPubMedGoogle Scholar
  60. 60.
    Mayer AR, Quinn DK, Master CL (2017) The spectrum of mild traumatic brain injury. Neurology 89(6):623.  https://doi.org/10.1212/WNL.0000000000004214 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sharp DJ, Jenkins PO (2015) Concussion is confusing us all. Prac Neurol 15(3):172.  https://doi.org/10.1136/practneurol-2015-001087 CrossRefGoogle Scholar
  62. 62.
    Feddermann-Demont N, Echemendia RJ, Schneider KJ, Solomon GS, Hayden KA, Turner M, Dvořák J, Straumann D, Tarnutzer AA (2017) What domains of clinical function should be assessed after sport-related concussion? A systematic review. Br J Sports Med 51(11):903.  https://doi.org/10.1136/bjsports-2016-097403 CrossRefPubMedGoogle Scholar
  63. 63.
    Al Sayegh A, Sandford D, Carson AJ (2010) Psychological approaches to treatment of postconcussion syndrome: a systematic review. J Neurol Neurosurg Psychiatry 81(10):1128–1134.  https://doi.org/10.1136/jnnp.2008.170092 CrossRefPubMedGoogle Scholar
  64. 64.
    Silverberg ND, Hallam BJ, Rose A, Underwood H, Whitfield K, Thornton AE, Whittal ML (2013) Cognitive-behavioral prevention of postconcussion syndrome in at-risk patients: a pilot randomized controlled trial. J Head Trauma Rehabil 28(4):313–322.  https://doi.org/10.1097/HTR.0b013e3182915cb5 CrossRefPubMedGoogle Scholar
  65. 65.
    Caplain S, Blancho S, Marque S, Montreuil M, Aghakhani N (2017) Early detection of poor outcome after mild traumatic brain injury: predictive factors using a multidimensional approach a pilot study. Front Neurol 8:666.  https://doi.org/10.3389/fneur.2017.00666 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sakai K, Yamada K (2019) Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn J Radiol 37(1):34–72.  https://doi.org/10.1007/s11604-018-0794-4 CrossRefPubMedGoogle Scholar
  67. 67.
    Minaee S, Wang Y, Choromanska A, Chung S, Wang X, Fieremans E, Flanagan S, Rath J, Lui YW (2018) A deep unsupervised learning approach Toward MTBI identification using diffusion MRI. Conf Proc IEEE Eng Med Biol Soc 2018:1267–1270.  https://doi.org/10.1109/embc.2018.8512556 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nielson JL, Cooper SR, Yue JK, Sorani MD, Inoue T, Yuh EL, Mukherjee P, Petrossian TC, Paquette J, Lum PY, Carlsson GE, Vassar MJ, Lingsma HF, Gordon WA, Valadka AB, Okonkwo DO, Manley GT, Ferguson AR (2017) Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis. PLoS ONE 12(3):e0169490.  https://doi.org/10.1371/journal.pone.0169490 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Vakorin VA, Doesburg SM, da Costa L, Jetly R, Pang EW, Taylor MJ (2016) Detecting mild traumatic brain injury using resting state magnetoencephalographic connectivity. PLoS Comput Biol 12(12):e1004914.  https://doi.org/10.1371/journal.pcbi.1004914 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhao X, Rangaprakash D, Yuan B, Denney TS Jr., Katz JS, Dretsch MN, Deshpande G (2018) Investigating the correspondence of clinical diagnostic grouping with underlying neurobiological and phenotypic clusters using unsupervised machine learning. Front Appl Math Stat. https://doi.org/10.3389/fams.2018.00025
  71. 71.
    Juengst SB, Switzer G, Oh BM, Arenth PM, Wagner AK (2017) Conceptual model and cluster analysis of behavioral symptoms in two cohorts of adults with traumatic brain injuries. J Clin Exp Neuropsychol 39(6):513–524.  https://doi.org/10.1080/13803395.2016.1240758 CrossRefPubMedGoogle Scholar
  72. 72.
    Si B, Dumkrieger G, Wu T, Zafonte R, Valadka AB, Okonkwo DO, Manley GT, Wang L, Dodick DW, Schwedt TJ, Li J (2018) Sub-classifying patients with mild traumatic brain injury: a clustering approach based on baseline clinical characteristics and 90-day and 180-day outcomes. PLoS ONE 13(7):e0198741.  https://doi.org/10.1371/journal.pone.0198741 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Landry AP, Ting WKC, Zador Z, Sadeghian A, Cusimano MD (2018) Using artificial neural networks to identify patients with concussion and postconcussion syndrome based on antisaccades. J Neurosurg. https://doi.org/10.3171/2018.6.Jns18607
  74. 74.
    Peacock WF, Van Meter TE, Mirshahi N, Ferber K, Gerwien R, Rao V, Sair HI, Diaz-Arrastia R, Korley FK (2017) Derivation of a three biomarker panel to improve diagnosis in patients with mild traumatic brain injury. Front Neurol 8:641. https://doi.og/10.3389/fneur.2017.00641
  75. 75.
    Zhou G, Brodsky JR (2015) Objective vestibular testing of children with dizziness and balance complaints following sports-related concussions. Otolaryngol Head Neck Surg 152(6):1133–1139.  https://doi.org/10.1177/0194599815576720 CrossRefPubMedGoogle Scholar
  76. 76.
    Corwin DJ, Wiebe DJ, Zonfrillo MR, Grady MF, Robinson RL, Goodman AM, Master CL (2015) Vestibular deficits following youth concussion. J Pediatr 166(5):1221–1225.  https://doi.org/10.1016/j.jpeds.2015.01.039 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kelly KM, Kiderman A, Akhavan S, Quigley MR, Snell ED, Happ E, Synowiec AS, Miller ER, Bauer MA, Oakes LP, Eydelman Y, Gallagher CW, Dinehart T, Schroeder JH, Ashmore RC (2019) Oculomotor, vestibular, and reaction time effects of sports-related concussion: video-oculography in assessing sports-related concussion. J Head Trauma Rehabil 34(3):176–188.  https://doi.org/10.1097/htr.0000000000000437 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kontos AP, Deitrick JM, Collins MW, Mucha A (2017) Review of vestibular and oculomotor screening and concussion rehabilitation. J Athl Train 52(3):256–261.  https://doi.org/10.4085/1062-6050-51.11.05 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Worts PR, Schatz P, Burkhart SO (2018) Test performance and test-retest reliability of the vestibular/ocular motor screening and king-devick test in adolescent athletes during a competitive sport season. Am J Sports Med 46(8):2004–2010.  https://doi.org/10.1177/0363546518768750 CrossRefPubMedGoogle Scholar
  80. 80.
    Craton N, Ali H, Lenoski S (2017) COACH CV: the seven clinical phenotypes of concussion. Brain Sci 7(9):119CrossRefPubMedCentralGoogle Scholar
  81. 81.
    Onyike CU, Diehl-Schmid J (2013) The epidemiology of frontotemporal dementia. Int Rev Psychiatry 25(2):130–137.  https://doi.org/10.3109/09540261.2013.776523 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Shinagawa S, Catindig JA, Block NR, Miller BL, Rankin KP (2016) When a little knowledge can be dangerous: false-positive diagnosis of behavioral variant frontotemporal dementia among community clinicians. Dement Geriatr Cogn Disord 41(1–2):99–108.  https://doi.org/10.1159/000438454 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Landqvist Waldö M, Gustafson L, Passant U, Englund E (2015) Psychotic symptoms in frontotemporal dementia: a diagnostic dilemma? Int Psychogeriatr 27(4):531–539.  https://doi.org/10.1017/S1041610214002580 CrossRefPubMedGoogle Scholar
  84. 84.
    Newman EJ, Breen K, Patterson J, Hadley DM, Grosset KA, Grosset DG (2009) Accuracy of Parkinson's disease diagnosis in 610 general practice patients in the West of Scotland. Mov Disord 24(16):2379–2385.  https://doi.org/10.1002/mds.22829 CrossRefPubMedGoogle Scholar
  85. 85.
    Silva de Lima AL, Hahn T, Evers LJW, de Vries NM, Cohen E, Afek M, Bataille L, Daeschler M, Claes K, Boroojerdi B, Terricabras D, Little MA, Baldus H, Bloem BR, Faber MJ (2017) Feasibility of large-scale deployment of multiple wearable sensors in Parkinson's disease. PLoS ONE 12(12):e0189161.  https://doi.org/10.1371/journal.pone.0189161 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, Abyu GY, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Akinyemi RO, Alabed S, Al-Raddadi R, Alvis-Guzman N, Amare AT, Ansari H, Anwari P, Ärnlöv J, Asayesh H, Asgedom SW, Atey TM, Avila-Burgos L, Frinel E, Avokpaho GA, Azarpazhooh MR, Barac A, Barboza M, Barker-Collo SL, Bärnighausen T, Bedi N, Beghi E, Bennett DA, Bensenor IM, Berhane A, Betsu BD, Bhaumik S, Birlik SM, Biryukov S, Boneya DJ, Bulto LNB, Carabin H, Casey D, Castañeda-Orjuela CA, Catalá-López F, Chen H, Chitheer AA, Chowdhury R, Christensen H, Dandona L, Dandona R, de Veber GA, Dharmaratne SD, Do HP, Dokova K, Dorsey ER, Ellenbogen RG, Eskandarieh S, Farvid MS, Fereshtehnejad S-M, Fischer F, Foreman KJ, Geleijnse JM, Gillum RF, Giussani G, Goldberg EM, Gona PN, Goulart AC, Gugnani HC, Gupta R, Hachinski V, Gupta R, Hamadeh RR, Hambisa M, Hankey GJ, Hareri HA, Havmoeller R, Hay SI, Heydarpour P, Hotez PJ, Jakovljevic MB, Javanbakht M, Jeemon P, Jonas JB, Kalkonde Y, Kandel A, Karch A, Kasaeian A, Kastor A, Keiyoro PN, Khader YS, Khalil IA, Khan EA, Khang Y-H, Tawfih A, Khoja A, Khubchandani J, Kulkarni C, Kim D, Kim YJ, Kivimaki M, Kokubo Y, Kosen S, Kravchenko M, Krishnamurthi RV, Defo BK, Kumar GA, Kumar R, Kyu HH, Larsson A, Lavados PM, Li Y, Liang X, Liben ML, Lo WD, Logroscino G, Lotufo PA, Loy CT, Mackay MT, El Razek HMA, El Razek MMA, Majeed A, Malekzadeh R, Manhertz T, Mantovani LG, Massano J, Mazidi M, McAlinden C, Mehata S, Mehndiratta MM, Memish ZA, Mendoza W, Mengistie MA, Mensah GA, Meretoja A, Mezgebe HB, Miller TR, Mishra SR, Ibrahim NM, Mohammadi A, Mohammed KE, Mohammed S, Mokdad AH, Moradi-Lakeh M, Velasquez IM, Musa KI, Naghavi M, Ngunjiri JW, Nguyen CT, Nguyen G, Le Nguyen Q, Nguyen TH, Nichols E, Ningrum DNA, Nong VM, Norrving B, Noubiap JJN, Ogbo FA, Owolabi MO, Pandian JD, Parmar PG, Pereira DM, Petzold M, Phillips MR, Piradov MA, Poulton RG, Pourmalek F, Qorbani M, Rafay A, Rahman M, Rahman MH, Rai RK, Rajsic S, Ranta A, Rawaf S, Renzaho AMN, Rezai MS, Roth GA, Roshandel G, Rubagotti E, Sachdev P, Safiri S, Sahathevan R, Sahraian MA, Samy AM, Santalucia P, Santos IS, Sartorius B, Satpathy M, Sawhney M, Saylan MI, Sepanlou SG, Shaikh MA, Shakir R, Shamsizadeh M, Sheth KN, Shigematsu M, Shoman H, Silva DAS, Smith M, Sobngwi E, Sposato LA, Stanaway JD, Stein DJ, Steiner TJ, Stovner LJ, Abdulkader RS, Ei Szoeke C, Tabarés-Seisdedos R, Tanne D, Theadom AM, Thrift AG, Tirschwell DL, Topor-Madry R, Tran BX, Truelsen T, Tuem KB, Ukwaja KN, Uthman OA, Varakin YY, Vasankari T, Venketasubramanian N, Vlassov VV, Wadilo F, Wakayo T, Wallin MT, Weiderpass E, Westerman R, Wijeratne T, Wiysonge CS, Woldu MA, Wolfe CDA, Xavier D, Xu G, Yano Y, Yimam HH, Yonemoto N, Yu C, Zaidi Z, El Sayed Zaki M, Zunt JR, Murray CJL, Vos T (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology 16(11):877–897.  https://doi.org/10.1016/S1474-4422(17)30299-5 CrossRefGoogle Scholar
  87. 87.
    Seeley WW (2009) Frontotemporal dementia neuroimaging: a guide for clinicians. Front Neurol Neurosci 24:160–167.  https://doi.org/10.1159/000197895 CrossRefPubMedGoogle Scholar
  88. 88.
    Jain S, Lo SE, Louis ED (2006) Common misdiagnosis of a common neurological disorder: how are we misdiagnosing essential tremor? JAMA Neurol 63(8):1100–1104.  https://doi.org/10.1001/archneur.63.8.1100 CrossRefGoogle Scholar
  89. 89.
    Kikuchi M, Koenig T, Munesue T, Hanaoka A, Strik W, Dierks T, Koshino Y, Minabe Y (2011) EEG microstate analysis in drug-naive patients with panic disorder. PLoS ONE 6(7):e22912.  https://doi.org/10.1371/journal.pone.0022912 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, Dierks T, Strik W, Kinoshita T, Koenig T (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease. Clin Neurophysiol 124(6):1106–1114.  https://doi.org/10.1016/j.clinph.2013.01.005 CrossRefPubMedGoogle Scholar
  91. 91.
    Arani LA, Hosseini A, Asadi F, Masoud SA, Nazemi E (2018) Intelligent computer systems for multiple sclerosis diagnosis: a systematic review of reasoning techniques and methods. Acta Inf Med 26(4):258–264.  https://doi.org/10.5455/aim.2018.26.258-264 CrossRefGoogle Scholar
  92. 92.
    Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D (2016) Concrete Problems in AI Safety (arXiv e-prints) Google Scholar
  93. 93.
    Ozcan EE, Gorenek B (2018) Lessons from the current European Heart Rhythm Association consensus document on screening for atrial fibrillation. Anatol J Cardiol 19(3):222–224. https://doi.org/10.14744/AnatolJCardiol.2018.37043
  94. 94.
    Ho CWL, Soon D, Caals K, Kapur J (2019) Governance of automated image analysis and artificial intelligence analytics in healthcare. Clin Radiol 74(5):329–337.  https://doi.org/10.1016/j.crad.2019.02.005 CrossRefPubMedGoogle Scholar
  95. 95.
    Giger ML (2018) Machine learning in medical imaging. J Am Coll Radiol 15(3 Pt B):512–520. https://doi.org/10.1016/j.jacr.2017.12.028
  96. 96.
    Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584.  https://doi.org/10.3348/kjr.2017.18.4.570 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Pinto A, Brunese L, Pinto F, Reali R, Daniele S, Romano L (2012) The concept of error and malpractice in radiology. Semin Ultrasound CT MR 33(4):275–279.  https://doi.org/10.1053/j.sult.2012.01.009 CrossRefPubMedGoogle Scholar
  98. 98.
    Tang A, Tam R, Cadrin-Chenevert A, Guest W, Chong J, Barfett J, Chepelev L, Cairns R, Mitchell JR, Cicero MD, Poudrette MG, Jaremko JL, Reinhold C, Gallix B, Gray B, Geis R (2018) Canadian association of radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J 69(2):120–135. https://doi.org/10.1016/j.carj.2018.02.002
  99. 99.
    Paschen S, Deuschl G (2018) Patient evaluation and selection for movement disorders surgery: the changing spectrum of indications. Progr Neurol Surg 33:80–93.  https://doi.org/10.1159/000480910 CrossRefGoogle Scholar
  100. 100.
    Deuschl G, Paschen S, Witt K (2013) Clinical outcome of deep brain stimulation for Parkinson's disease. Handb Clin Neurol 116:107–128.  https://doi.org/10.1016/b978-0-444-53497-2.00010-3 CrossRefPubMedGoogle Scholar
  101. 101.
    Fasano A, Romito LM, Daniele A, Piano C, Zinno M, Bentivoglio AR, Albanese A (2010) Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic implants. Brain 133(9):2664–2676.  https://doi.org/10.1093/brain/awq221 CrossRefPubMedGoogle Scholar
  102. 102.
    Deuschl G, Raethjen J, Hellriegel H, Elble R (2011) Treatment of patients with essential tremor. Lancet Neurol 10(2):148–161.  https://doi.org/10.1016/s1474-4422(10)70322-7 CrossRefPubMedGoogle Scholar
  103. 103.
    AliveCor (2019) FDA clears first medical device accessory for Apple Watch®. AliveCor, Inc. https://www.alivecor.com/press/press_release/fda-clears-first-medical-device-for-apple-watch/. Accessed 10 Jul 2019

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Urvish K. Patel
    • 1
    Email author
  • Arsalan Anwar
    • 2
  • Sidra Saleem
    • 3
  • Preeti Malik
    • 4
  • Bakhtiar Rasul
    • 4
  • Karan Patel
    • 5
  • Robert Yao
    • 6
  • Ashok Seshadri
    • 7
  • Mohammed Yousufuddin
    • 8
  • Kogulavadanan Arumaithurai
    • 9
  1. 1.Department of Neurology and Public HealthIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of NeurologyUH Cleveland Medical CenterClevelandUSA
  3. 3.Department of NeurologyUniversity of ToledoToledoUSA
  4. 4.Department of Public HealthIcahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.Department of NeuroscienceJohns Hopkins UniversityBaltimoreUSA
  6. 6.Department of Biomedical InformaticsArizona State University and Mayo Clinic ArizonaScottsdaleUSA
  7. 7.Department of PsychiatryMayo Clinic Health SystemRochesterUSA
  8. 8.Department of Internal MedicineMayo Clinic Health SystemAustinUSA
  9. 9.Department of NeurologyMayo Clinic Health SystemAustinUSA

Personalised recommendations