Advertisement

Journal of Neurology

, Volume 266, Issue 12, pp 2920–2928 | Cite as

Cognitive function and neuropathological outcomes: a forward-looking approach

  • Elizabeth MunozEmail author
  • Teresa FilshteinEmail author
  • Brianne M. Bettcher
  • Donald McLaren
  • Trey Hedden
  • Doug Tommet
  • Dan Mungas
  • Terry Therneau
Original Communication

Abstract

Objective

To evaluate the risk of Alzheimer’s disease-related neuropathology burden at autopsy given older adults’ current cognitive state.

Method

Participants included 1,303 individuals who enrolled in the Religious Orders Study (ROS) and 1,789 who enrolled in the Rush Memory and Aging Project (MAP). Cognitive status was evaluated via standardized assessments of global cognition and episodic memory. At the time of analyses, about 50% of participants were deceased with the remaining numbers right censored. Using multi-state Cox proportional hazard models, we compared the cognitive status of all subjects alive at a given age and estimated future risk of dying with different AD-related neuropathologies. Endpoints considered were Braak Stages (0–2, 3–4, 5–6), CERAD (0, 1, 2, 3), and TDP-43 (0, 1, 2, 3) level.

Results

For all three pathological groupings (Braak, CERAD, TDP-43), we found that a cognitive test score one standard deviation below average put individuals at up to three times the risk for being diagnosed with late stage AD at autopsy according to pathological designations. The effect remained significant after adjusting for sex, APOE-e4 status, smoking status, education level, and vascular health scores.

Conclusion

Applying multi-state modeling techniques, we were able to identify those at risk of exhibiting specific levels of neuropathology based on current cognitive test performance. This approach presents new and approachable possibilities in clinical settings for diagnosis and treatment development programs.

Keywords

Alzheimer’s disease Neuropathology Cognition Multi-state model 

Notes

Author contributions

All authors developed the study concept. EM drafted the manuscript. TF performed the data analysis. TF and EM interpreted the results under the supervision of TT, BB, TH, DM, DT, TT, and DM provided comprehensive and critical revisions. All authors approved the final version of the manuscript submission.

Funding

Research reported in this publication was supported by the National Institute on Aging of the National Institutes of Health under Award Numbers: P30AG010161, R01AG015819, R01AG017917 and R01AG042210 to Rush Alzheimer’s Disease Center. We thank Dr. David Bennett and Rush Alzheimer’s Disease Center for data access. ROSMAP data can be requested at www.radc.rush.edu. This manuscript was a joint effort from the 2015 Friday Harbor Advanced Psychometrics Workshop (R13AG030995). This research was also supported in part by K01AG040197 (Hedden), F32AG042228 (McLaren), and F32AG056134 (Munoz). The content is solely the responsibility of the authors and does not necessarily represents the official views of the National Institutes of Health.

Compliance with ethical standards

Conflicts of interest

The authors have no relevant conflict of interest to report.

Ethical standards

The studies reported in this manuscript were approved by the Institutional Review Board of Rush—Presbyterian—St. Luke’s Medical Center and the Institutional Review Board of Rush University Medical Center.

References

  1. 1.
    Hulette CM, Welsh-Bohmer KA, Murray MGP et al (1998) Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical alzheimer disease in cognitively normal individuals. J Neuropathol 57:1168–1174CrossRefGoogle Scholar
  2. 2.
    Boyle PA, Yu L, Wilson RS et al (2013) Relation of neuropathology with cognitive decline among older persons without dementia. Front Aging Neurosci 5:50.  https://doi.org/10.3389/fnagi.2013.00050 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Boyle PA, Wilson RS, Yu L et al (2013) Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol 74:478–489.  https://doi.org/10.1002/ana.23964 CrossRefPubMedGoogle Scholar
  4. 4.
    Balasubramanian AB, Kawas CH, Peltz CB et al (2012) Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology 79:915–921.  https://doi.org/10.1212/WNL.0b013e318266fc77 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Driscoll I, Resnick SM, Troncoso JC et al (2006) Impact of Alzheimer’s pathology on cognitive trajectories in nondemented elderly. Ann Neurol 60:688–695.  https://doi.org/10.1002/ana.21031 CrossRefPubMedGoogle Scholar
  6. 6.
    Wilson RS, Leurgans SE, Boyle PA et al (2010) Neurodegenerative basis of age-related cognitive decline. Neurology 75:1070–1078.  https://doi.org/10.1212/WNL.0b013e3181f39adc CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & Dementia 8:1–13.  https://doi.org/10.1016/j.jalz.2011.10.007 CrossRefGoogle Scholar
  8. 8.
    Jack CR, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology 9:119–128.  https://doi.org/10.1016/S1474-4422(09)70299-6 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS (2012) Overview and findings from the religious orders study. Curr Alzheimer Res 9:628–645CrossRefGoogle Scholar
  10. 10.
    Bennett DA, Schneider JA, Buchman AS et al (2012) Overview and findings from the rush memory and aging project. Curr Alzheimer Res 9:646–663CrossRefGoogle Scholar
  11. 11.
    Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486CrossRefGoogle Scholar
  12. 12.
    Chang X-L, Tan M-S, Tan L, Yu J-T (2016) The role of TDP-43 in Alzheimer’s disease. Mol Neurobiol 53:3349–3359.  https://doi.org/10.1007/s12035-015-9264-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Amador-Ortiz C, Lin W-L, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445.  https://doi.org/10.1002/ana.21154 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bennett DA, Schneider JA, Arvanitakis Z et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844CrossRefGoogle Scholar
  15. 15.
    Nag S, Yu L, Capuano AW et al (2015) Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann Neurol 77:942–952.  https://doi.org/10.1002/ana.24388 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149.  https://doi.org/10.1007/s00401-008-0477-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefGoogle Scholar
  18. 18.
    Nagy Z, Yilmazer-Hanke DM, Braak H et al (1998) Assessment of the pathological stages of Alzheimer’s disease in thin paraffin sections: a comparative study. Dement Geriatr Cogn Disord 9:140–144CrossRefGoogle Scholar
  19. 19.
    Wilson RS, Arnold SE, Schneider JA et al (2007) Chronic distress, age-related neuropathology, and late-life dementia. Psychosom Med 69:47–53.  https://doi.org/10.1097/01.psy.0000250264.25017.21 CrossRefPubMedGoogle Scholar
  20. 20.
    Mirra SS, Hart MN, Terry RD (1993) Making the diagnosis of alzheimer’s disease: A primer for practicing pathologists. Arch Pathol Lab Med 117:132–144PubMedGoogle Scholar
  21. 21.
    Hu WT, Josephs KA, Knopman DS et al (2008) Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease. Acta Neuropathol 116:215–220.  https://doi.org/10.1007/s00401-008-0400-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bennett DA, Schneider JA, Buchman AS et al (2005) The rush memory and aging project: study design and baseline characteristics of the study cohort. Neuroepidemiology 25:163–175.  https://doi.org/10.1159/000087446 CrossRefPubMedGoogle Scholar
  23. 23.
    Wilson RS, Beckett LA, Barnes LL et al (2002) Individual differences in rates of change in cognitive abilities of older persons. Psychol Aging 17:179–193.  https://doi.org/10.1037/0882-7974.17.2.179 CrossRefPubMedGoogle Scholar
  24. 24.
    Wilson RS, Barnes LL, Bennett DA (2003) Assessment of lifetime participation in cognitively stimulating activities. J Clin Exp Neuropsychol 25:634–642.  https://doi.org/10.1076/jcen.25.5.634.14572 CrossRefPubMedGoogle Scholar
  25. 25.
    R Core Team (2015) R: A language and environment for statistical computing.Google Scholar
  26. 26.
    Therneau TM (2015) A package for survival analysis in S. version 2.38Google Scholar
  27. 27.
    Therneau TM, Grambsch PM (2000) Modeling survival data: extending the Cox model. Springer, New YorkCrossRefGoogle Scholar
  28. 28.
    Putter H, Fiocco M, Geskus RB (2007) Tutorial in biostatistics: competing risks and multi-state models. Statist Med 26:2389–2430.  https://doi.org/10.1002/sim.2712 CrossRefGoogle Scholar
  29. 29.
    Andel R, Gatz M, Pedersen NL et al (2001) Deficits in controlled processing may predict dementia: a twin study. J Gerontol Ser B: Psychol Sci Soc Sci 56:P347–P355.  https://doi.org/10.1093/geronb/56.6.P347 CrossRefGoogle Scholar
  30. 30.
    Small BJ, Herlitz A, Fratiglioni L et al (1997) Cognitive predictors of incident Alzheimer’s disease: a prospective longitudinal study. Neuropsychology 11:413–420.  https://doi.org/10.1037/0894-4105.11.3.413 CrossRefPubMedGoogle Scholar
  31. 31.
    Small BJ, Viitanen M, Backman L (1997) Mini-mental state examination item scores as predictors of Alzheimer’s disease: incidence data from the kungsholmen project, stockholm. J Gerontol A Biol Sci Med Sci 52A:M299–M304.  https://doi.org/10.1093/gerona/52A.5.M299 CrossRefGoogle Scholar
  32. 32.
    McArdle JJ, Small BJ, Bäckman L, Fratiglioni L (2005) Longitudinal models of growth and survival applied to the early detection of alzheimer’s disease. J Geriatr Psychiatry Neurol 18:234–241.  https://doi.org/10.1177/0891988705281879 CrossRefPubMedGoogle Scholar
  33. 33.
    Bäckman L, Small BJ (2007) Cognitive deficits in preclinical Alzheimer’s disease and vascular dementia: patterns of findings from the Kungsholmen Project. Physiol Behav 92:80–86.  https://doi.org/10.1016/j.physbeh.2007.05.014 CrossRefPubMedGoogle Scholar
  34. 34.
    Mungas D, Beckett L, Harvey D et al (2010) Heterogeneity of cognitive trajectories in diverse older persons. Psychol Aging 25:606–619.  https://doi.org/10.1037/a0019502 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Josephs KA, Whitwell JL, Knopman DS et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70:1850–1857.  https://doi.org/10.1212/01.wnl.0000304041.09418.b1 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Uryu K, Nakashima-Yasuda H, Forman MS et al (2008) Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67:555–564.  https://doi.org/10.1097/NEN.0b013e31817713b5 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wilson AC, Dugger BN, Dickson DW, Wang D-S (2011) TDP-43 in aging and Alzheimer’s disease - a review. Int J Clin Exp Pathol 4:147–155PubMedPubMedCentralGoogle Scholar
  38. 38.
    Wilson RS, Capuano AW, Bennett DA et al (2016) Temporal course of neurodegenerative effects on cognition in old age. Neuropsychology 30:591–599.  https://doi.org/10.1037/neu0000282 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Barnes LL, Wilson RS, Li Y et al (2005) Racial differences in the progression of cognitive decline in alzheimer disease. Am J Geriatr Psychiatry 13:959–967.  https://doi.org/10.1097/00019442-200511000-00006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Human Development and Family SciencesUniversity of Texas at AustinAustinUSA
  2. 2.Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoUSA
  3. 3.Rocky Mountain Alzheimer’s Disease Center, Department of NeurologyUniversity of Colorado Anschutz Medical CampusAuroraUSA
  4. 4.Biospective Inc.MontréalCanada
  5. 5.Department of NeurologyIcahn School of Medicine At Mount SinaiNew YorkUSA
  6. 6.Department of Psychiatry and Human Behavior, Alpert Medical SchoolBrown UniversityProvidenceUSA
  7. 7.Department of NeurologyUniversity of CaliforniaDavisUSA
  8. 8.Division of Biomedical Statistics and InformaticsMayo ClinicRochesterUSA
  9. 9.University of CaliforniaRiversideUSA

Personalised recommendations