Advertisement

Journal of Neurology

, Volume 266, Issue 11, pp 2812–2820 | Cite as

Reduced gene expression of netrin family members in skin and sural nerve specimens of patients with painful peripheral neuropathies

  • Anna-Lena Schubert
  • Melissa Held
  • Claudia Sommer
  • Nurcan ÜçeylerEmail author
Original Communication

Abstract

Objective

To investigate the expression of axon guidance cues in skin and sural nerve biopsies of patients with polyneuropathies (PNP) as potential markers of nerve de- and regeneration and inflammation.

Methods

We prospectively recruited 88 patients with PNP and compared data between patient subgroups and healthy controls. All patients underwent skin punch and/or sural nerve biopsy at the lower leg and proximal thigh. We characterized gene expression profiles of netrin family members as target genes involved in neuronal de- and regeneration [netrin 1, deleted in colorectal cancer (DCC), uncoordinated5H2, neogenin 1 (NEO1), netrin G1, netrin G2] using quantitative real-time PCR.

Results

Gene expression of netrin 1 (p < 0.05 in proximal skin), DCC (p < 0.001 in distal skin), NEO1 (p < 0.05 in distal skin), netrin G1 (p < 0.05 in proximal and p < 0.01 in distal skin), and netrin G2 (p < 0.001 in distal skin) was lower in skin biopsies of patients with neuropathy compared to healthy controls. Gene expression of NEO1 (p < 0.05 in distal skin), netrin G2 (p < 0.05 in distal skin), and DCC (p < 0.05 in sural nerve) was lower in samples of patients with painful compared to painless PNP and also correlated positively with intraepidermal nerve fiber density. Skin and sural nerve gene expression of the investigated target genes did not differ between neuropathies of different etiologies.

Conclusion

We show reduced cutaneous and neural axon guide expression, which may contribute to a dysregulation of nerve fiber de- and regeneration.

Keywords

Polyneuropathy Axon guides Netrin-1 Gene expression Skin biopsy Nerve biopsy 

Notes

Funding

Our study was supported by intramural funds of the University of Würzburg. N.Ü. was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG; Grant no. UE171-5/1).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

Our study was approved by the Würzburg Medical Faculty Ethics Committee (85/06) and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All participants gave written informed consent before study inclusion.

References

  1. 1.
    Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964PubMedGoogle Scholar
  2. 2.
    Boyer NP, Gupton SL (2018) Revisiting netrin-1: one who guides (axons). Front Cell Neurosci 12:221PubMedPubMedCentralGoogle Scholar
  3. 3.
    Round J, Stein E (2007) Netrin signaling leading to directed growth cone steering. Curr Opin Neurobiol 17:15–21PubMedGoogle Scholar
  4. 4.
    Cirulli V, Yebra M (2007) Netrins: beyond the brain. Nat Rev Mol Cell Biol 8:296–306PubMedGoogle Scholar
  5. 5.
    Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87:175–185Google Scholar
  6. 6.
    Xu K, Wu Z, Renier N, Antipenko A, Tzvetkova-Robev D, Xu Y, Minchenko M, Nardi-Dei V, Rajashankar KR, Himanen J, Tessier-Lavigne M, Nikolov DB (2014) Neural migration. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science 344:1275–1279PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838–842PubMedGoogle Scholar
  8. 8.
    Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97:927–941Google Scholar
  9. 9.
    Nakashiba T, Ikeda T, Nishimura S, Tashiro K, Honjo T, Culotti JG, Itohara S (2000) Netrin-G1: a novel glycosyl phosphatidylinositol-linked mammalian netrin that is functionally divergent from classical netrins. J Neurosci 20:6540–6550PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nakashiba T, Nishimura S, Ikeda T, Itohara S (2002) Complementary expression and neurite outgrowth activity of netrin-G subfamily members. Mech Dev 111:47–60PubMedGoogle Scholar
  11. 11.
    Niimi K, Nishimura-Akiyoshi S, Nakashiba T, Itohara S (2007) Monoclonal antibodies discriminating netrin-G1 and netrin-G2 neuronal pathways. J Neuroimmunol 192:99–104PubMedGoogle Scholar
  12. 12.
    Lin JC, Ho WH, Gurney A, Rosenthal A (2003) The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. Nat Neurosci 6:1270–1276PubMedGoogle Scholar
  13. 13.
    Matsukawa H, Akiyoshi-Nishimura S, Zhang Q, Lujan R, Yamaguchi K, Goto H, Yaguchi K, Hashikawa T, Sano C, Shigemoto R, Nakashiba T, Itohara S (2014) Netrin-G/NGL complexes encode functional synaptic diversification. J Neurosci 34:15779–15792PubMedPubMedCentralGoogle Scholar
  14. 14.
    Mulero P, Cordova C, Hernandez M, Martin R, Gutierrez B, Munoz JC, Redondo N, Gallardo I, Tellez N, Nieto ML (2017) Netrin-1 and multiple sclerosis: a new biomarker for neuroinflammation? Eur J Neurol 24:1108–1115PubMedGoogle Scholar
  15. 15.
    Jamuar SS, Schmitz-Abe K, D'Gama AM, Drottar M, Chan WM, Peeva M, Servattalab S, Lam AN, Delgado MR, Clegg NJ, Zayed ZA, Dogar MA, Alorainy IA, Jamea AA, Abu-Amero K, Griebel M, Ward W, Lein ES, Markianos K, Barkovich AJ, Robson CD, Grant PE, Bosley TM, Engle EC, Walsh CA, Yu TW (2017) Biallelic mutations in human DCC cause developmental split-brain syndrome. Nat Genet 49:606–612PubMedPubMedCentralGoogle Scholar
  16. 16.
    Marsh AP, Heron D, Edwards TJ, Quartier A, Galea C, Nava C, Rastetter A, Moutard ML, Anderson V, Bitoun P, Bunt J, Faudet A, Garel C, Gillies G, Gobius I, Guegan J, Heide S, Keren B, Lesne F, Lukic V, Mandelstam SA, McGillivray G, McIlroy A, Meneret A, Mignot C, Morcom LR, Odent S, Paolino A, Pope K, Riant F, Robinson GA, Spencer-Smith M, Srour M, Stephenson SE, Tankard R, Trouillard O, Welniarz Q, Wood A, Brice A, Rouleau G, Attie-Bitach T, Delatycki MB, Mandel JL, Amor DJ, Roze E, Piton A, Bahlo M, Billette de Villemeur T, Sherr EH, Leventer RJ, Richards LJ, Lockhart PJ, Depienne C (2017) Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance. Nat Genet 49:511–514PubMedPubMedCentralGoogle Scholar
  17. 17.
    Madison RD, Zomorodi A, Robinson GA (2000) Netrin-1 and peripheral nerve regeneration in the adult rat. Exp Neurol 161:563–570PubMedGoogle Scholar
  18. 18.
    Webber CA, Christie KJ, Cheng C, Martinez JA, Singh B, Singh V, Thomas D, Zochodne DW (2011) Schwann cells direct peripheral nerve regeneration through the netrin-1 receptors, DCC and Unc5H2. Glia 59:1503–1517PubMedGoogle Scholar
  19. 19.
    Lv J, Sun X, Ma J, Ma X, Zhang Y, Li F, Li Y, Zhao Z (2015) Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor. Biochem Biophys Res Commun 464:263–268PubMedGoogle Scholar
  20. 20.
    Berg A, Zelano J, Cullheim S (2010) Netrin G-2 ligand mRNA is downregulated in spinal motoneurons after sciatic nerve lesion. NeuroReport 21:782–785PubMedGoogle Scholar
  21. 21.
    Tadagavadi RK, Wang W, Ramesh G (2010) Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. J Immunol 185:3750–3758PubMedGoogle Scholar
  22. 22.
    Mirakaj V, Jennewein C, Konig K, Granja T, Rosenberger P (2012) The guidance receptor neogenin promotes pulmonary inflammation during lung injury. FASEB J 26:1549–1558PubMedGoogle Scholar
  23. 23.
    Konig K, Gatidou D, Granja T, Meier J, Rosenberger P, Mirakaj V (2012) The axonal guidance receptor neogenin promotes acute inflammation. PLoS O ne 7:e32145Google Scholar
  24. 24.
    Kieseier BC, Mathey EK, Sommer C, Hartung HP (2018) Immune-mediated neuropathies. Nat Rev Dis Primers 4:31PubMedGoogle Scholar
  25. 25.
    Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48:339–351PubMedPubMedCentralGoogle Scholar
  26. 26.
    Bouhassira D, Attal N, Fermanian J, Alchaar H, Gautron M, Masquelier E, Rostaing S, Lanteri-Minet M, Collin E, Grisart J, Boureau F (2004) Development and validation of the Neuropathic Pain Symptom Inventory. Pain 108:248–257PubMedGoogle Scholar
  27. 27.
    Von Korff M, Ormel J, Keefe FJ, Dworkin SF (1992) Grading the severity of chronic pain. Pain 50:133–149Google Scholar
  28. 28.
    Hautzinger BM (1993) Allgemeine Depressionsskala. Manual Weinheim Beltz Gesellschaft, Weinheim DOIGoogle Scholar
  29. 29.
    Merkies IS, Schmitz PI, van der Meche FG, Samijn JP, van Doorn PA, Inflammatory Neuropathy C, Treatment G (2003) Connecting impairment, disability, and handicap in immune mediated polyneuropathies. J Neurol Neurosurg Psychiatry 74:99–104PubMedPubMedCentralGoogle Scholar
  30. 30.
    Vrancken AF, Notermans NC, Jansen GH, Wokke JH, Said G (2004) Progressive idiopathic axonal neuropathy—a comparative clinical and histopathological study with vasculitic neuropathy. J Neurol 251:269–278PubMedGoogle Scholar
  31. 31.
    Hughes RA (2001) Chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 50:281–282PubMedGoogle Scholar
  32. 32.
    Eftimov F, van Schaik I (2013) Chronic inflammatory demyelinating polyradiculoneuropathy: update on clinical features, phenotypes and treatment options. Curr Opin Neurol 26:496–502PubMedGoogle Scholar
  33. 33.
    Ayrignac X, Viala K, Koutlidis RM, Taieb G, Stojkovic T, Musset L, Leger JM, Fournier E, Maisonobe T, Bouche P (2013) Sensory chronic inflammatory demyelinating polyneuropathy: an under-recognized entity? Muscle Nerve 48:727–732PubMedGoogle Scholar
  34. 34.
    Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, Lauria G, Malik RA, Spallone V, Vinik A, Bernardi L, Valensi P, G. Toronto Diabetic Neuropathy Expert (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293PubMedPubMedCentralGoogle Scholar
  35. 35.
    NOESC, Hadden R, Hahn AF, Illa I, Joint Task Force of the EFNS, and the PNS (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society—first revision. J Peripher Nerv Syst 15:185–195Google Scholar
  36. 36.
    Collins MP, Periquet MI, Mendell JR, Sahenk Z, Nagaraja HN, Kissel JT (2003) Nonsystemic vasculitic neuropathy: insights from a clinical cohort. Neurology 61:623–630PubMedGoogle Scholar
  37. 37.
    Üçeyler N, Geng A, Reiners K, Toyka KV, Sommer C (2015) Non-systemic vasculitic neuropathy: single-center follow-up of 60 patients. J Neurol 262:2092–2100PubMedGoogle Scholar
  38. 38.
    Langjahr M, Schubert AL, Sommer C, Uceyler N (2018) Increased pro-inflammatory cytokine gene expression in peripheral blood mononuclear cells of patients with polyneuropathies. J Neurol 265:618–627PubMedGoogle Scholar
  39. 39.
    Üçeyler N, Kafke W, Riediger N, He L, Necula G, Toyka KV, Sommer C (2010) Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology 74:1806–1813PubMedGoogle Scholar
  40. 40.
    Lauria G, Cornblath DR, Johansson O, McArthur JC, Mellgren SI, Nolano M, Rosenberg N, Sommer C, S. European Federation of Neurological (2005) EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol 12:747–758PubMedGoogle Scholar
  41. 41.
    Dyck PJ, Engelstadt J (2005) Pathological alterations of nerves. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy. Elsevier Saunders, Philadelphia, pp 733–829Google Scholar
  42. 42.
    Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49PubMedGoogle Scholar
  43. 43.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  44. 44.
    Üçeyler N, Riediger N, Kafke W, Sommer C (2015) Differential gene expression of cytokines and neurotrophic factors in nerve and skin of patients with peripheral neuropathies. J Neurol 262:203–212PubMedGoogle Scholar
  45. 45.
    Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the growth cone: ligand–receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563Google Scholar
  46. 46.
    Mothe AJ, Tassew NG, Shabanzadeh AP, Penheiro R, Vigouroux RJ, Huang L, Grinnell C, Cui YF, Fung E, Monnier PP, Mueller BK, Tator CH (2017) RGMa inhibition with human monoclonal antibodies promotes regeneration, plasticity and repair, and attenuates neuropathic pain after spinal cord injury. Sci Rep 7:10529PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wu CH, Yuan XC, Gao F, Li HP, Cao J, Liu YS, Yu W, Tian B, Meng XF, Shi J, Pan HL, Li M (2016) Netrin-1 contributes to myelinated afferent fiber sprouting and neuropathic pain. Mol Neurobiol 53:5640–5651PubMedGoogle Scholar
  48. 48.
    Dun XP, Parkinson DB (2017) Role of netrin-1 signaling in nerve regeneration. Int J Mol Sci.  https://doi.org/10.3390/ijms18030491 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Marcol W, Kotulska K, Larysz-Brysz M, Kowalik JL (2007) BDNF contributes to animal model neuropathic pain after peripheral nerve transection. Neurosurg Rev 30:235–243 (discussion 243) PubMedGoogle Scholar
  50. 50.
    Koppes AN, Nordberg AL, Paolillo GM, Goodsell NM, Darwish HA, Zhang L, Thompson DM (2014) Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng Part A 20:494–506PubMedGoogle Scholar
  51. 51.
    Wang Y, Li D, Wang G, Chen L, Chen J, Liu Z, Zhang Z, Shen H, Jin Y, Shen Z (2017) The effect of co-transplantation of nerve fibroblasts and Schwann cells on peripheral nerve repair. Int J Biol Sci 13:1507–1519PubMedPubMedCentralGoogle Scholar
  52. 52.
    Dreesmann L, Mittnacht U, Lietz M, Schlosshauer B (2009) Nerve fibroblast impact on Schwann cell behavior. Eur J Cell Biol 88:285–300PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anna-Lena Schubert
    • 1
  • Melissa Held
    • 1
  • Claudia Sommer
    • 1
  • Nurcan Üçeyler
    • 1
    Email author
  1. 1.Department of NeurologyUniversity of WürzburgWürzburgGermany

Personalised recommendations