Advertisement

Journal of Neurology

, Volume 266, Supplement 1, pp 52–61 | Cite as

A probabilistic atlas of the human inner ear’s bony labyrinth enables reliable atlas-based segmentation of the total fluid space

  • Valerie KirschEmail author
  • F. Nejatbakhshesfahani
  • S.-A. Ahmadi
  • M. Dieterich
  • B. Ertl-Wagner
Original Communication

Abstract

Intravenous contrast agent-enhanced magnetic resonance imaging of the endolymphatic space (ELS) of the inner ear permits direct, in-vivo, non-invasive visualization of labyrinthine structures and thus verification of endolymphatic hydrops (ELH). However, current volumetric assessment approaches lack normalization. The aim of this study was to develop a probabilistic atlas of the inner ear’s bony labyrinth as a first step towards an automated and reproducible volume-based quantification of the ELS. The study included three different datasets: a source dataset (D1) to build the probabilistic atlas and two testing sets (D2, D3). D1 included 24 right-handed patients (12 females; mean age 51.5 ± 3.9 years) and D2 5 patients (3 female; mean age 48.8 ± 5.01 years) with vestibular migraine without ELH or any measurable vestibular deficits. D3 consisted of five patients (one female; mean age 46 ± 5.2 years) suffering from unilateral Menière’s disease and ELH. Data processing comprised three steps: preprocessing using an affine and deformable fusion registration pipeline, computation of an atlas for the left and right inner ear using a label-assisted approach, and validation of the atlas based on localizing and segmenting previously unseen ears. The three-dimensional probabilistic atlas of the inner ear’s bony labyrinth consisted of the internal acoustic meatus and inner ears (including cochlea, otoliths, and semicircular canals) for both sides separately. The analyses showed a high level of agreement between the atlas-based segmentation and the manual gold standard with an overlap of 89% for the right ear and 86% for the left ear (measured by dice scores). This probabilistic in vivo atlas of the human inner ear’s bony labyrinth and thus of the inner ear’s total fluid space for both ears represents a necessary step towards a normalized, easily reproducible and reliable volumetric quantification of the perilymphatic and endolymphatic space in view of MR volumetric assessment of ELH. The proposed atlas lays the groundwork for state-of-the-art approaches (e.g., deep learning) and will be provided to the scientific community.

Keywords

Total fluid space Endolymphatic space Endolymphatic hydrops Bony labyrinth Inner ear Deformable registration Probabilistic atlas Automatic segmentation 

Abbreviations

3D

Three dimensional

CISS

Constructive interference in steady state

DS

Dice score

ELH

Endolymphatic hydrops

ELS

Endolymphatic space

FLAIR

Fluid-attenuated inversion recovery

GRAPPA

Generalized auto-calibrating partially parallel acquisition

MR

Magnetic resonance

iv

Intravenous

it

Intratympanal

iMRI

Gadolinium-enhanced high-resolution magnetic resonance imaging of the inner ear

itMRI

Intratympanal applied iMRI

ivMRI

Intravenous applied delayed iMRI

L

Left

MD

Menière’s disease

MRI

Magnetic resonance imaging

R

Right

RH

Right handed

RMSE

Root-mean-square error

SD

Standard deviation

SVV

Subjective visual vertical

TNOV

Total number of voxels

TV

Total volume

vHIT

Videooculography during head impulse test

VM

Vestibular migraine

Notes

Acknowledgements

Partially funded by the Society for the Advancement of Science and Research at the Medical Faculty of the Ludwig Maximilians University Munich (Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München), the Friedrich-Baur-Stiftung (FBS), the Graduate School of Systemic Neurosciences (GSN), and the German Federal Ministry of Education and Research (German Center for Vertigo and Balance Disorders-IFBLMU, Grant code 01EO140). This is part of the dissertation of F. Nejatbakhshesfahani. We thank Gregory C. Sharp for his help in choosing the right applications in 3D Slicer, Gary E Christensen and his group for sending us a CT-template of the inner ear, and Albert Berman for introducing this project.

Compliance with ethical standards

Conflicts of interest

The authors declare they have no competing financial interests.

Ethical standard

All the procedures conducted with the participants of this study were carried out according to the Declaration of Helsinki. The protocol of the study was approved by the Institutional Review Board approval was obtained prior to the initiation of the study (No 641-15).

Informed consent

Each patient provided informed consent.

References

  1. 1.
    Fraysse BG, Alonso A, House WF (1980) Menière’s disease and endolymphatic hydrops: clinical-histopathological correlations. Ann Otol Rhinol Laryngol Suppl 89:2–22CrossRefPubMedGoogle Scholar
  2. 2.
    Nakashima T, Pyykkö I, Arroll MA et al (2016) Meniere’s disease. Nat Rev Dis Prim 2:16028.  https://doi.org/10.1038/nrdp.2016.28 CrossRefPubMedGoogle Scholar
  3. 3.
    Rauch SD, Merchant SN, Thedinger BA (1989) Meniere’s syndrome and endolymphatic hydrops. Double-blind temporal bone study. Ann Otol Rhinol Laryngol 98:873–883CrossRefPubMedGoogle Scholar
  4. 4.
    Ishiyama G, Lopez IA, Sepahdari AR, Ishiyama A (2015) Meniere’s disease: histopathology, cytochemistry, and imaging. Ann N Y Acad Sci 1343:49–57.  https://doi.org/10.1111/nyas.12699 CrossRefPubMedGoogle Scholar
  5. 5.
    Pyykkö I, Zou J, Gürkov R et al (2019) Imaging of temporal bone. Adv Otolaryngol 82:12–31Google Scholar
  6. 6.
    Lopez-Escamez JA, Attyé A (2019) Magnetic resonance imaging of endolymphatic hydrops: controversies and common ground. J Vestib Res.  https://doi.org/10.3233/VES-180663 CrossRefPubMedGoogle Scholar
  7. 7.
    Naganawa S, Satake H, Kawamura M et al (2008) Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 Tesla. Eur Radiol 18:920–924.  https://doi.org/10.1007/s00330-008-0854-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Naganawa S, Yamazaki M, Kawai H et al (2010) Visualization of endolymphatic hydrops in Ménière’s disease with single-dose intravenous gadolinium-based contrast media using heavily T(2)-weighted 3D-FLAIR. Magn Reson Med Sci 9:237–242CrossRefPubMedGoogle Scholar
  9. 9.
    Attyé A, Eliezer M, Galloux A et al (2017) Endolymphatic hydrops imaging: differential diagnosis in patients with Meniere disease symptoms. Diagn Interv Imaging 98:699–706.  https://doi.org/10.1016/j.diii.2017.06.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Imai T, Uno A, Kitahara T et al (2017) Evaluation of endolymphatic hydrops using 3-T MRI after intravenous gadolinium injection. Eur Arch Oto-Rhino-Laryngol 274:4103–4111.  https://doi.org/10.1007/s00405-017-4739-9 CrossRefGoogle Scholar
  11. 11.
    Karch-Georges A, Veillon F, Vuong H et al (2019) MRI of endolymphatic hydrops in patients with vestibular schwannomas: a case-controlled study using non-enhanced T2-weighted images at 3 Teslas. Eur Arch Oto-Rhino-Laryngol 276:1591–1599.  https://doi.org/10.1007/s00405-019-05395-8 CrossRefGoogle Scholar
  12. 12.
    Kirsch V, Becker-Bense S, Berman A et al (2018 Oct) (2018) Transient endolymphatic hydrops after an attack of vestibular migraine: a longitudinal single case study. J Neurol 265(Suppl 1):51–53.  https://doi.org/10.1007/s00415-018-8870-3 (Epub 2018 Apr 25) CrossRefPubMedGoogle Scholar
  13. 13.
    Sun W, Liang Q, Kuang S et al (2019) 3D-real IR MRI detects serendipity of inner ear in enlarged vestibular aqueduct syndrome. Acta Otolaryngol 139:233–237.  https://doi.org/10.1080/00016489.2018.1563719 CrossRefPubMedGoogle Scholar
  14. 14.
    Conte G, Caschera L, Tuscano B et al (2018) Three-Tesla magnetic resonance imaging of the vestibular endolymphatic space: a systematic qualitative description in healthy ears. Eur J Radiol 109:77–82.  https://doi.org/10.1016/j.ejrad.2018.10.023 CrossRefPubMedGoogle Scholar
  15. 15.
    Lobo D, Tuñón M, Villarreal I et al (2018) Intratympanic gadolinium magnetic resonance imaging supports the role of endolymphatic hydrops in the pathogenesis of immune-mediated inner-ear disease. J Laryngol Otol 132:554–559.  https://doi.org/10.1017/S0022215118000749 CrossRefPubMedGoogle Scholar
  16. 16.
    Nakada T, Yoshida T, Suga K et al (2014) Endolymphatic space size in patients with vestibular migraine and Ménière’s disease. J Neurol 261:2079–2084.  https://doi.org/10.1007/s00415-014-7458-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Neff BA, Staab JP, Egger SD et al (2012) Auditory and vestibular symptoms and chronic subjective dizziness in patients with Ménière’s disease, vestibular migraine, and Ménière’s disease with concomitant vestibular migraine. Otol Neurotol 33:1235–1244.  https://doi.org/10.1097/MAO.0b013e31825d644a CrossRefPubMedGoogle Scholar
  18. 18.
    Gürkov R, Berman A, Dietrich O et al (2015) MR volumetric assessment of endolymphatic hydrops. Eur Radiol 25:585–595.  https://doi.org/10.1007/s00330-014-3414-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Homann G, Vieth V, Weiss D et al (2015) Semi-quantitative vs. volumetric determination of endolymphatic space in Menière’s disease using endolymphatic hydrops 3T-HR-MRI after intravenous gadolinium injection. PLoS O ne 10:e0120357.  https://doi.org/10.1371/journal.pone.0120357 CrossRefGoogle Scholar
  20. 20.
    Naganawa S, Suzuki K, Nakamichi R et al (2013) Semi-quantification of endolymphatic size on MR imaging after intravenous injection of single-dose gadodiamide: comparison between two types of processing strategies. Magn Reson Med Sci 12:261–269.  https://doi.org/10.2463/mrms.2013-0019 CrossRefPubMedGoogle Scholar
  21. 21.
    Zwergal A, Kirsch V, Gerb J et al (2018) Neuro-otology: at the borders of ear and brain. Nervenarzt 89:1106–1114.  https://doi.org/10.1007/s00115-018-0598-x CrossRefPubMedGoogle Scholar
  22. 22.
    Penney GP, Weese J, Little JA et al (1998) A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans Med Imaging 17:586–595.  https://doi.org/10.1109/42.730403 CrossRefPubMedGoogle Scholar
  23. 23.
    Nakashima T, Naganawa S, Pyykko I et al (2009) Grading of endolymphatic hydrops using magnetic resonance imaging. Acta Otolaryngol Suppl.  https://doi.org/10.1080/00016480902729827 CrossRefPubMedGoogle Scholar
  24. 24.
    Barath K, Schuknecht B, Naldi AM et al (2014) Detection and grading of endolymphatic hydrops in meniere disease using MR imaging. Am J Neuroradiol 35:1387–1392.  https://doi.org/10.3174/ajnr.A3856 CrossRefPubMedGoogle Scholar
  25. 25.
    Carmichael OT, Aizenstein HA, Davis SW et al (2005) Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage 27:979–990.  https://doi.org/10.1016/j.neuroimage.2005.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bilello M, Lao Z, Krejza J et al (2012) Atlas-based classification of hyperintense regions from MR diffusion-weighted images of the brain: preliminary results. Neuroradiol J 25:112–120.  https://doi.org/10.1177/197140091202500115 CrossRefPubMedGoogle Scholar
  27. 27.
    Toga AW, Thompson PM (2001) The role of image registration in brain mapping. Image Vis Comput 19:3–24.  https://doi.org/10.1016/S0262-8856(00)00055-X CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dieterich M, Bense S, Lutz S et al (2003) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007CrossRefPubMedGoogle Scholar
  29. 29.
    Mansour SL, Schoenwolf GC (2005) Morphogenesis of the inner ear. In: Kelley M, Wu D, Popper A, Fay R (eds) Development of the inner ear. Springer, New York, pp 43–84CrossRefGoogle Scholar
  30. 30.
    Hatch EP, Noyes CA, Wang X et al (2007) Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development 134:3615–3625.  https://doi.org/10.1242/dev.006627 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dill T (2008) Contraindications to magnetic resonance imaging: non-invasive imaging. Heart 94:943–948.  https://doi.org/10.1136/hrt.2007.125039 CrossRefGoogle Scholar
  32. 32.
    Lempert T (2013) Vestibular migraine. Semin Neurol 33:212–218.  https://doi.org/10.1055/s-0033-1354596 CrossRefPubMedGoogle Scholar
  33. 33.
    Lopez-Escamez JA, Carey J, Chung W-H et al (2015) Diagnostic criteria for Menière’s disease. J Vestib Res 25:1–7.  https://doi.org/10.3233/VES-150549 CrossRefPubMedGoogle Scholar
  34. 34.
    Dieterich M, Brandt T (1993) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33:292–299.  https://doi.org/10.1002/ana.410330311 CrossRefPubMedGoogle Scholar
  35. 35.
    Schneider E, Villgrattner T, Vockeroth J et al (2009) EyeSeeCam: an eye movement-driven head camera for the examination of natural visual exploration. Ann N Y Acad Sci 1164:461–467.  https://doi.org/10.1111/j.1749-6632.2009.03858.x CrossRefPubMedGoogle Scholar
  36. 36.
    Jongkees LB, Maas JP, Philipszoon AJ (1962) Clinical nystagmography. A detailed study of electro-nystagmography in 341 patients with vertigo. Pract Otorhinolaryngol (Basel) 24:65–93Google Scholar
  37. 37.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefGoogle Scholar
  38. 38.
    Salmaso D, Longoni AM (1985) Problems in the assessment of hand preference. Cortex 21:533–549.  https://doi.org/10.1016/S0010-9452(58)80003-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Kirsch V, Ertl-Wagner B, Berman A et al (2018) High-resolution MRI of the inner ear enables syndrome differentiation and specific treatment of cerebellar downbeat nystagmus and secondary endolymphatic hydrops in a postoperative ELST patient. J Neurol 265:48–50.  https://doi.org/10.1007/s00415-018-8858-z CrossRefPubMedGoogle Scholar
  40. 40.
    Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) Asymptotic stability of switching systems. Magn Reson Imaging 30:1323–1341.  https://doi.org/10.1016/j.mri.2012.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefGoogle Scholar
  42. 42.
    Christensen GE, He J, Dill JA et al (2003) Automatic measurement of the labyrinth using image registration and a deformable inner ear atlas. Acad Radiol 10:988–999CrossRefPubMedGoogle Scholar
  43. 43.
    Sharp GC, Li R, Wolfgang J, et al (2009) Plastimatch—an open source software suite for radiotherapy image processing. In: Proceedings of the XVIth international conference on the use of computers in radiotherapy (ICCR). Amsterdam, NetherlandsGoogle Scholar
  44. 44.
    Sharp GC (2011) Deformable image registration using B-splines. Radiation Oncology-Massachusetts General Hospital, Boston, USAGoogle Scholar
  45. 45.
    Verma A, Mishra A (2015) Image compression using gaussian smoothing filter and median filter. Int J Recent Innov Trends Comput Commun 3:6344–6347Google Scholar
  46. 46.
    Cabezas M, Oliver A, Lladó X et al (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Progr Biomed 104:e158–e177.  https://doi.org/10.1016/j.cmpb.2011.07.015 CrossRefGoogle Scholar
  47. 47.
    Zou KH, Warfield SK, Bharatha A et al (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11:178–189.  https://doi.org/10.1016/S1076-6332(03)00671-8 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu F, Huang W, Meng X et al (2012) Comparison of noninvasive evaluation of endolymphatic hydrops in Meniere’s disease and endolymphatic space in healthy volunteers using magnetic resonance imaging. Acta Otolaryngol 132:234–240.  https://doi.org/10.3109/00016489.2011.637232 CrossRefPubMedGoogle Scholar
  49. 49.
    Kendi TK, Arikan OK, Koc C (2005) Volume of components of labyrinth: magnetic resonance imaging study. Otol Neurotol 26:778–781CrossRefPubMedGoogle Scholar
  50. 50.
    Morita N, Kariya S, Deroee AF et al (2009) Membranous labyrinth volumes in normal ears and Ménière disease: a three-dimensional reconstruction study NIH public access. Laryngoscope 119:2216–2220.  https://doi.org/10.1002/lary.20723 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Levy RB, Marquarding T, Reid AP et al (2019) Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat Commun 10:2783.  https://doi.org/10.1038/s41467-019-10690-3 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tervaniemi M, Hugdahl K (2003) Lateralization of auditory-cortex functions. Brain Res Rev 43:231–246.  https://doi.org/10.1016/j.brainresrev.2003.08.004 CrossRefPubMedGoogle Scholar
  53. 53.
    Sininger YS, Bhatara A (2012) Laterality of basic auditory perception. Laterality 17:129.  https://doi.org/10.1080/1357650X.2010.541464 CrossRefPubMedGoogle Scholar
  54. 54.
    Janzen J, Schlindwein P, Bense S et al (2008) Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system. Neuroimage 42:1508–1518.  https://doi.org/10.1016/j.neuroimage.2008.06.026 CrossRefPubMedGoogle Scholar
  55. 55.
    Lopez C, Blanke O, Mast FW (2012) The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 212:159–179.  https://doi.org/10.1016/j.neuroscience.2012.03.028 CrossRefPubMedGoogle Scholar
  56. 56.
    Kirsch V, Boegle R, Keeser D et al (2018) Handedness-dependent functional organizational patterns within the bilateral vestibular cortical network revealed by fMRI connectivity based parcellation. Neuroimage 178:224–237.  https://doi.org/10.1016/j.neuroimage.2018.05.018 (Epub 2018 May 19) CrossRefPubMedGoogle Scholar
  57. 57.
    Bense S, Bartenstein P, Lutz S et al (2003) Three determinants of vestibular hemispheric dominance during caloric stimulation: a positron emission tomography study. Ann N Y Acad Sci 1004:440–445.  https://doi.org/10.1111/j.1749-6632.2003.tb00256.x CrossRefGoogle Scholar
  58. 58.
    Dieterich M, Kirsch V, Brandt T (2017) Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus. J Neurol.  https://doi.org/10.1007/s00415-017-8453-8 CrossRefPubMedGoogle Scholar
  59. 59.
    Mišić B, Betzel RF, Griffa A et al (2018) Network-based asymmetry of the human auditory system. Cereb Cortex 28:2655–2664.  https://doi.org/10.1093/cercor/bhy101 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Goni J, van den Heuvel MP, Avena-Koenigsberger A et al (2014) Resting-brain functional connectivity predicted by analytic measures of network communication. Proc Natl Acad Sci 111:833–838.  https://doi.org/10.1073/pnas.1315529111 CrossRefPubMedGoogle Scholar
  61. 61.
    Andoh J, Matsushita R, Zatorre RJ (2015) Asymmetric interhemispheric transfer in the auditory network: evidence from TMS, resting-state fMRI, and diffusion imaging. J Neurosci 35:14602–14611.  https://doi.org/10.1523/JNEUROSCI.2333-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cammoun L, Thiran JP, Griffa A et al (2015) Intrahemispheric cortico-cortical connections of the human auditory cortex. Brain Struct Funct 220:3537–3553.  https://doi.org/10.1007/s00429-014-0872-z CrossRefPubMedGoogle Scholar
  63. 63.
    Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8:389–395.  https://doi.org/10.1038/nn1409 CrossRefPubMedGoogle Scholar
  64. 64.
    Dalca AV, Balakrishnan G, Guttag J, Sabuncu MR (2018) Unsupervised learning for fast probabilistic diffeomorphic registration. MICCAI: Medical image computing and computer assisted intervention.  https://doi.org/10.1007/978-3-030-00928-1_82
  65. 65.
    Dalca AV, Yu E, Golland P et al (2019) Unsupervised deep learning for Bayesian brain MRI segmentation. MICCAI: Medical Image Computing and Computer Assisted Intervention. arXiv:1904.11319
  66. 66.
    Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents—current status. Neuroradiology 58:433–441.  https://doi.org/10.1007/s00234-016-1658-1 CrossRefPubMedGoogle Scholar
  67. 67.
    Moser FG, Watterson CT, Weiss S et al (2018) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: comparison between gadobutrol and linear gadolinium-based contrast agents. Am J Neuroradiol 39:421–426.  https://doi.org/10.3174/ajnr.A5538 CrossRefPubMedGoogle Scholar
  68. 68.
    Boyken J, Frenzel T, Lohrke J et al (2018) Gadolinium accumulation in the deep cerebellar nuclei and globus pallidus after exposure to linear but not macrocyclic gadolinium-based contrast agents in a retrospective pig study with high similarity to clinical conditions. Investig Radiol 53:278–285.  https://doi.org/10.1097/RLI.0000000000000440 CrossRefGoogle Scholar
  69. 69.
    Radtke A, von Brevern M, Neuhauser H et al (2012) Vestibular migraine: long-term follow-up of clinical symptoms and vestibulo-cochlear findings. Neurology 79:1607–1614.  https://doi.org/10.1212/WNL.0b013e31826e264f CrossRefPubMedGoogle Scholar
  70. 70.
    Ito T, Kitahara T, Inui H et al (2016) Endolymphatic space size in patients with Meniere’s disease and healthy controls. Acta Otolaryngol 6489:1–4.  https://doi.org/10.3109/00016489.2016.1169556 CrossRefGoogle Scholar
  71. 71.
    Liu F, Huang W, Wang Z et al (2011) Noninvasive evaluation of endolymphatic space in healthy volunteers using magnetic resonance imaging. Acta Otolaryngol 131:247–257.  https://doi.org/10.3109/00016489.2010.524938 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, University HospitalLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Graduate School of Systemic Neuroscience (GSN)Ludwig-Maximilians-UniversitätMunichGermany
  3. 3.German Center for Vertigo and Balance Disorders- IFB, University HospitalLudwig-Maximilians-UniversitätMunichGermany
  4. 4.Department of Radiology, University HospitalLudwig-Maximilians-UniversitätMunichGermany
  5. 5.Munich Cluster for Systems Neurology (SyNergy)MunichGermany
  6. 6.Department of Radiology, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Personalised recommendations