Journal of Neurology

, Volume 266, Supplement 1, pp 108–117 | Cite as

Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway

  • Seyed-Ahmad AhmadiEmail author
  • Gerome Vivar
  • Johann Frei
  • Sergej Nowoshilow
  • Stanislav Bardins
  • Thomas Brandt
  • Siegbert Krafczyk
Original Communication


We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS, n = 49), distal sensory polyneuropathy (PNP, n = 12), anterior lobe cerebellar atrophy (CA, n = 48), downbeat nystagmus syndrome (DN, n = 16), primary orthostatic tremor (OT, n = 25), Parkinson’s disease (PD, n = 27), phobic postural vertigo (PPV n = 59) and healthy controls (HC, n = 57). We classify disorders and rank sway features using supervised machine learning. We compute a continuous, human-interpretable 2D map of stance disorders using t-stochastic neighborhood embedding (t-SNE). Classification of eight diagnoses yielded 82.7% accuracy [95% CI (80.9%, 84.5%)]. Five (CA, PPV, AVS, HC, OT) were classified with a mean sensitivity and specificity of 88.4% and 97.1%, while three (PD, PNP, and DN) achieved a mean sensitivity of 53.7%. The most discriminative stance condition was ranked as “standing on foam-rubber, eyes closed”. Mapping of sway path features into 2D space revealed clear clusters among CA, PPV, AVS, HC and OT subjects. We confirm previous claims that machine learning can aid in classification of clinical sway patterns measured with static posturography. Given a standardized, long-term acquisition of quantitative patient databases, modern machine learning and data analysis techniques help in visualizing, understanding and utilizing high-dimensional sensor data from clinical routine.


Neurological stance and gait disorders Static posturography Body sway Machine learning Visualization 



Artificial neural network


Acute unilateral vestibulopathy


Anterior lobe cerebella atrophy


Confidence interval


Downbeat nystagmus syndrome




Mean decrease in impurity


Healthy controls


Primary orthostatic tremor


Principal component analysis


Parkinson’s disease


Sensory polyneuropathy




Stacking classifier


Support vector machine


t-Stochastic neighborhood embedding



The study was supported by the German Federal Ministry of Education and Research (BMBF) in connection with the foundation of the German Center for Vertigo and Balance Disorders (DSGZ) (Grant number 01 EO 0901).

Compliance with ethical standards

Conflicts of interest

None of the authors have potential conflicts of interest to be disclosed.


  1. 1.
    Dieterich M, Brandt T (2015) The bilateral central vestibular system: Its pathways, functions, and disorders. Ann N Y Acad Sci. 1343:10–26CrossRefPubMedGoogle Scholar
  2. 2.
    Brandt T, Dieterich M (2017) The dizzy patient: don’t forget disorders of the central vestibular system. Nat Rev Neurol. 13:352–362CrossRefPubMedGoogle Scholar
  3. 3.
    Staab JP, Eckhardt-Henn A, Horii A, Jacob R, Strupp M, Brandt T et al (2017) Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): consensus document of the committee for the classification of vestibular disorders of the Bárány Society. J Vestib Res. 27:191–208CrossRefPubMedGoogle Scholar
  4. 4.
    Black FO (2001) What can posturography tell us about vestibular function? Ann N Y Acad Sci. 942:446–464CrossRefPubMedGoogle Scholar
  5. 5.
    de Waele C. Vestibular tests: static and dynamic posturography BT—encyclopedia of neuroscience. In: Binder MD, Hirokawa N, Windhorst U (eds) Springer, Berlin. 2009;4217–8.Google Scholar
  6. 6.
    Monsell EM, Furman JM, Herdman SJ, Konrad HR, Shepard NT (1997) Computerized dynamic platform posturography. Otolaryngol Head Neck Surg 117:394–398CrossRefPubMedGoogle Scholar
  7. 7.
    Krafczyk S, Tietze S, Swoboda W, Valkovi P, Brandt T (2006) Artificial neural network: a new diagnostic posturographic tool for disorders of stance. Clin Neurophysiol. 117:1692–1698CrossRefPubMedGoogle Scholar
  8. 8.
    Fioretti S, Scocco M, Ladislao L, Ghetti G, Rabini RA (2010) Identification of peripheral neuropathy in type-2 diabetic subjects by static posturography and linear discriminant analysis. Gait Posture. 32:317–320CrossRefPubMedGoogle Scholar
  9. 9.
    Howcroft J, Lemaire ED, Kofman J, McIlroy WE (2017) Elderly fall risk prediction using static posturography. PLoS One 12:1–13CrossRefGoogle Scholar
  10. 10.
    Saripalle SK, Paiva GC, Derakhshani RR, King GW, Lovelace CT (2014) Classification of body movements based on posturographic data. Hum Mov Sci. 33:238–250CrossRefPubMedGoogle Scholar
  11. 11.
    Vonk J, Horlings CGC, Allum JHJ (2010) Differentiating malingering balance disorder patients from healthy controls, compensated unilateral vestibular loss, and whiplash patients using stance and gait posturography. Audiol Neurotol. 15:261–272CrossRefGoogle Scholar
  12. 12.
    Redfern MS, Furman JM (1994) Postural sway of patients with vestibular disorders during optic flow. J Vestib Res. 4:221–230PubMedGoogle Scholar
  13. 13.
    Diener HC, Dichgans J, Bacher M, Gompf B (1984) Quantification of postural sway in normals and patients with cerebellar diseases. Clin Neurophysiol. Elsevier 57:134–142CrossRefGoogle Scholar
  14. 14.
    Helmchen C, Kirchhoff J-B, Göttlich M, Sprenger A (2017) Postural ataxia in cerebellar downbeat nystagmus: its relation to visual, proprioceptive and vestibular signals and cerebellar atrophy. PLoS One 12:e0168808CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rigby HB, Rigby MH, Caviness JN (2015) Orthostatic tremor: a spectrum of fast and slow frequencies or distinct entities? Tremor Other Hyperkinet Mov (N Y). 5:324Google Scholar
  16. 16.
    Schöberl F, Feil K, Xiong G, Bartenstein P, la Fougére C, Jahn K et al (2017) Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance. Brain 140:83–97CrossRefPubMedGoogle Scholar
  17. 17.
    Ickenstein GW, Ambach H, Klöditz A, Koch H, Isenmann S, Reichmann H et al (2012) Static posturography in aging and Parkinson’s disease. Front Aging Neurosci. 4:20CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brandt T, Strupp M, Novozhilov S, Krafczyk S. Artificial neural network posturography detects the transition of vestibular neuritis to phobic postural vertigo. J. Neurol. 2012. p. 182–4.Google Scholar
  19. 19.
    Allum JHJ, Bloem BR, Carpenter MG, Honegger F (2001) Differential diagnosis of proprioceptive and vestibular deficits using dynamic support-surface posturography. Gait Posture. 14:217–226CrossRefPubMedGoogle Scholar
  20. 20.
    Schwesig R, Fischer D, Becker S, Lauenroth A (2014) Intraobserver reliability of posturography in patients with vestibular neuritis. Somatosens Mot Res. 31:28–34CrossRefPubMedGoogle Scholar
  21. 21.
    Bronstein AM, Guerraz M (1999) Visual-vestibular control of posture and gait: physiological mechanisms and disorders. Curr Opin Neurol. 12:5–11CrossRefPubMedGoogle Scholar
  22. 22.
    Deuschl G, Bain P, Brin M (1998) Consensus statement of the movement disorder society on tremor. Ad Hoc Scientific Committee. Mov Disord. 13:2–23CrossRefGoogle Scholar
  23. 23.
    Strupp M, Hufner K, Sandmann R, Zwergal A, Dieterich M, Jahn K et al (2011) Central oculomotor disturbances and nystagmus: a window into the brainstem and cerebellum. Dtsch Arztebl Int. 108:197–204PubMedPubMedCentralGoogle Scholar
  24. 24.
    Strupp M, Brandt T (1999) Vestibular neuritis. Adv Otorhinolaryngol. 55:111–136PubMedGoogle Scholar
  25. 25.
    Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol. 56:33–39CrossRefPubMedGoogle Scholar
  26. 26.
    Richardson JK, Thies S, Ashton-Miller JA (2008) An exploration of step time variability on smooth and irregular surfaces in older persons with neuropathy. Clin Biomech. 23:349–356CrossRefGoogle Scholar
  27. 27.
    Brandt T (1996) Phobic postural vertigo. Neurology. 46:1515–1519CrossRefPubMedGoogle Scholar
  28. 28.
    Hufschmidt A, Dichgans J, Mauritz K-H, Hufschmidt M (1980) Some methods and parameters of body sway quantification and their neurological applications. Arch Psychiatr Nervenkr. 228:135–150CrossRefPubMedGoogle Scholar
  29. 29.
    Brandt T, Krafczyk S, Malsbenden I (1981) Postural imbalance with head extension: improvement by training as a model for ataxia therapy. Ann N Y Acad Sci. 374:636–649CrossRefPubMedGoogle Scholar
  30. 30.
    Caruana R, Karampatziakis N, Yessenalina A. An empirical evaluation of supervised learning in high dimensions. Proc 25th Int Conf Mach Learn-ICML ’08. 2008. p. 96–103.Google Scholar
  31. 31.
    Yu H-F, Huang F-L, Lin C-J (2011) Dual coordinate descent methods for logistic regression and maximum entropy models. Mach Learn. 85:41–75CrossRefGoogle Scholar
  32. 32.
    Altman NS (1992) An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am Stat. 46:175–185Google Scholar
  33. 33.
    Hinton GE (1989) Connectionist learning procedures. Artif Intell. 40:185–234CrossRefGoogle Scholar
  34. 34.
    Smola AJ, Sch B, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput. 14:199–222CrossRefGoogle Scholar
  35. 35.
    Criminisi, A, Konukoglu E, Shotton J (2011) Decision forests for classification, regression, density estimation manifold learning and semi-supervised learning microsoft technical reportGoogle Scholar
  36. 36.
    Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn. 63:3–42CrossRefGoogle Scholar
  37. 37.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res. 12:2825–2830Google Scholar
  38. 38.
    Wolpert DH (1992) Stacked generalization. Neural Netw. 5:241–259CrossRefGoogle Scholar
  39. 39.
    Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. ed. 1. Wadsworth Stat. Ser. Chapman and Hall/CRC; 1984.Google Scholar
  40. 40.
    van der Maaten L, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res. 9:2579–2605Google Scholar
  41. 41.
    Jones E, Oliphant T, Peterson P, others. SciPy: Open source scientific tools for Python [Internet]. 2001.
  42. 42.
    Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand AP, Apartis E et al (2016) Orthostatic tremor: a cerebellar pathology? Brain 139:2182–2197CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hageman PA, Leibowitz JM, Blanke D (1995) Age and gender effects on postural control measures. Arch Phys Med Rehabil. 76:961–965CrossRefPubMedGoogle Scholar
  44. 44.
    Gill J, Allum JHJ, Carpenter MG, Held-Ziolkowska M, Adkin AL, Honegger F et al (2001) Trunk sway measures of postural stability during clinical balance tests: effects of age. J Gerontol Ser A Biol Sci Med Sci. 56:438–447CrossRefGoogle Scholar
  45. 45.
    Feil K, Böttcher N, Guri F, Krafczyk S, Schöberl F, Zwergal A et al (2015) Long-term course of orthostatic tremor in serial posturographic measurement. Park Relat Disord. 21:905–910CrossRefGoogle Scholar
  46. 46.
    Fung VSC, Sauner D, Day BL (2001) A dissociation between subjective and objective unsteadiness in primary orthostatic tremor. Brain 124:322–330CrossRefPubMedGoogle Scholar
  47. 47.
    Wuehr M, Schlick C, Möhwald K, Schniepp R (2018) Walking in orthostatic tremor modulates tremor features and is characterized by impaired gait stability. Sci Rep. 8:14152CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kumar N, Kohlbecher S, Schneider E. A novel approach to video-based pupil tracking. Conf Proc—IEEE Int Conf Syst Man Cybern. 2009. pp 1255–62.Google Scholar
  49. 49.
    Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T et al (2016) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct. 221:1291–1308CrossRefPubMedGoogle Scholar
  50. 50.
    Pradhan C, Wuehr M, Akrami F, Neuhaeusser M, Huth S, Brandt T et al (2015) Automated classification of neurological disorders of gait using spatio-temporal gait parameters. J Electromyogr Kinesiol. 25:413–422CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.German Center for Vertigo and Balance DisordersLudwig Maximilians UniversitätMunichGermany
  2. 2.Computer Aided Medical ProceduresTechnical University of MunichGarchingGermany
  3. 3.IMP Research Institute of Molecular PathologyViennaAustria

Personalised recommendations