Prospective association between adherence to the MIND diet and subjective memory complaints in the French NutriNet-Santé cohort

  • Moufidath AdjibadeEmail author
  • Karen E. Assmann
  • Chantal Julia
  • Pilar Galan
  • Serge Hercberg
  • Emmanuelle Kesse-Guyot
Original Communication



Our objective was to examine whether adherence to the Mediterranean–DASH diet intervention for neurodegenerative delay (MIND) was associated with SMC (as measured by the cognitive difficulties scale; CDS) in the NutriNet-Santé cohort.


The study sample consisted of 6011 participants aged ≥ 60 years at baseline, without SMC at the beginning. SMC were defined by a CDS score ≥ 43 (corresponding to the 4th CDS quartile) and SMC cases were participants with SMC at least once during follow-up. The MIND diet score (0–15 points) is a hybrid of the Mediterranean Diet and the Dietary Approaches to Stop Hypertension (DASH) scores, which includes ten brain healthy food groups and five unhealthy food groups. We used Cox proportional hazards models to estimate Hazard Ratios (HR) and 95% confidence intervals (95% CI).


Over a mean follow-up of 6 years, approximately 15% and 30% cases of SMC were identified among participants aged 60–69 and ≥ 70 years, respectively. The MIND diet score was not significantly associated with SMC in the full sample and among participants aged 60–69 years. Among participants aged ≥ 70 years, a significant inverse association was observed between adherence to the MIND diet and SMC (HRtertile 3 vs tertile 1 = 0.69, 95% CI = 0.47–0.99). This relationship was strengthened after exclusion of participants with depressive symptoms (HRtertile 2 vs tertile 1 = 0.69, 95% CI = 0.49–0.97; HRtertile 3 vs tertile 1 = 0.62, 95% CI = 0.41–0.93).


These findings suggest that the MIND diet could help to prevent or delay SMC among older adults without depressive symptoms.


Aging Cognition Subjective memory complaints Nutrition MIND diet 



Body mass index (kg/m2)


Cognitive difficulties scale


Confidence interval


Consumption unit


Hazard ratios


International physical activity questionnaire


Mediterranean–DASH diet Intervention for neurodegenerative delay


Modified French Programme National Nutrition Santé-Guideline Score


Standard deviation



We thank all the scientists, dietitians, technicians, and assistants for their technical contribution to the NutriNet-Santé study. We especially thank Younes Esseddik, Thi Duong Van, Frédéric Coffinieres, Mac Rakotondrazafy, Régis Gatibelza, and Paul Flanzy (computer scientists); and Nathalie Arnault, Véronique Gourlet, Dr. Fabien Szabo, Julien Allegre, Anouar Nechba, and Laurent Bourhis (data-manager/biostatisticians). We also thank all the volunteers of the NutriNet-Santé cohort. The NutriNet-Santé Study is supported by the French Ministry of Health (DGS), the French Public Health Agency, the French National Institute for Health and Medical Research (INSERM), the Medical Research Foundation (FRM), the French National Institute for Agricultural Research (INRA), the National Conservatory for Arts and Crafts (CNAM), the National Institute for Prevention and Health Education (INPES), and the Paris 13 University. MA was supported by a doctoral fellowship from the Ecole Doctorale Galilée, Paris 13 University, Sorbonne Paris Cité.

Compliance with ethical standards

Conflicts of interest

None of the authors declares any conflicts of interest.

Supplementary material

415_2019_9218_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 KB)
415_2019_9218_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 21 KB)
415_2019_9218_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 19 KB)


  1. 1.
    Balash Y, Mordechovich M, Shabtai H et al (2013) Subjective memory complaints in elders: depression, anxiety, or cognitive decline? Acta Neurol Scand 127:344–350. CrossRefGoogle Scholar
  2. 2.
    Jonker C, Geerlings MI, Schmand B (2000) Are memory complaints predictive for dementia? A review of clinical and population-based studies. Int J Geriatr Psychiatry 15:983–991CrossRefGoogle Scholar
  3. 3.
    Mitchell AJ, Beaumont H, Ferguson D et al (2014) Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand 130:439–451. CrossRefGoogle Scholar
  4. 4.
    Kaup AR, Nettiksimmons J, LeBlanc ES, Yaffe K (2015) Memory complaints and risk of cognitive impairment after nearly 2 decades among older women. Neurology 85:1852–1858. CrossRefGoogle Scholar
  5. 5.
    Brigola AG, Manzini CSS, Oliveira GBS et al (2015) Subjective memory complaints associated with depression and cognitive impairment in the elderly: a systematic review. Dement Neuropsychol 9:51–57. CrossRefGoogle Scholar
  6. 6.
    Dux MC, Woodard JL, Calamari JE et al (2008) The moderating role of negative affect on objective verbal memory performance and subjective memory complaints in healthy older adults. J Int Neuropsychol Soc JINS 14:327–336. CrossRefGoogle Scholar
  7. 7.
    Mol M, Carpay M, Ramakers I et al (2007) The effect of perceived forgetfulness on quality of life in older adults; a qualitative review. Int J Geriatr Psychiatry 22:393–400. CrossRefGoogle Scholar
  8. 8.
    Waldorff FB, Siersma V, Waldemar G (2009) Association between subjective memory complaints and health care utilisation: a three-year follow up. BMC Geriatr 9:43. CrossRefGoogle Scholar
  9. 9.
    Abate G, Marziano M, Rungratanawanich W et al (2017) Nutrition and AGE-ing: focusing on Alzheimer’s disease. Oxid Med Cell Longev 2017:7039816. CrossRefGoogle Scholar
  10. 10.
    Smith PJ, Blumenthal JA (2016) Dietary factors and cognitive decline. J Prev Alzheimers Dis 3:53–64. Google Scholar
  11. 11.
    Wu L, Sun D (2017) Adherence to Mediterranean diet and risk of developing cognitive disorders: an updated systematic review and meta-analysis of prospective cohort studies. Sci Rep 7:41317. CrossRefGoogle Scholar
  12. 12.
    Aridi YS, Walker JL, Wright ORL (2017) The association between the mediterranean dietary pattern and cognitive health: a systematic review. Nutrients. Google Scholar
  13. 13.
    Bhushan A, Fondell E, Ascherio A et al (2017) Adherence to Mediterranean diet and subjective cognitive function in men. Eur J Epidemiol. Google Scholar
  14. 14.
    Tangney CC, Li H, Wang Y et al (2014) Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 83:1410–1416. CrossRefGoogle Scholar
  15. 15.
    Berendsen AAM, Kang JH, van de Rest O et al (2017) The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in american older women. J Am Med Dir Assoc 18:427–432. CrossRefGoogle Scholar
  16. 16.
    Wengreen H, Munger RG, Cutler A et al (2013) Prospective study of dietary approaches to stop hypertension- and mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am J Clin Nutr 98:1263–1271. CrossRefGoogle Scholar
  17. 17.
    Morris MC, Tangney CC, Wang Y et al (2015) MIND diet slows cognitive decline with aging. Alzheimers Dement J Alzheimers Assoc 11:1015–1022. CrossRefGoogle Scholar
  18. 18.
    Morris MC (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31–37. CrossRefGoogle Scholar
  19. 19.
    Berendsen AM, Kang JH, Feskens EJM et al (2018) Association of long-term adherence to the MIND diet with cognitive function and cognitive decline in American women. J Nutr Health Aging 22:222–229. CrossRefGoogle Scholar
  20. 20.
    McEvoy CT, Guyer H, Langa KM, Yaffe K (2017) neuroprotective diets are associated with better cognitive function: the health and retirement study. J Am Geriatr Soc 65:1857–1862. CrossRefGoogle Scholar
  21. 21.
    Morris MC, Tangney CC, Wang Y et al (2015) MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 11:1007–1014. CrossRefGoogle Scholar
  22. 22.
    Hercberg S, Castetbon K, Czernichow S et al (2010) The Nutrinet-Sante Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10:242-CrossRefGoogle Scholar
  23. 23.
    Craig CL, Marshall AL, Sjostrom M et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395CrossRefGoogle Scholar
  24. 24.
    Lassale C, Castetbon K, Laporte F et al (2015) Validation of a Web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. Br J Nutr 113:953–962CrossRefGoogle Scholar
  25. 25.
    Lassale C, Peneau S, Touvier M et al (2013) Validity of web-based self-reported weight and height: results of the Nutrinet-Sante study. J Med Internet Res 15:e152-CrossRefGoogle Scholar
  26. 26.
    Vergnaud AC, Touvier M, Mejean C et al (2011) Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Sante study. Int J Public Health 56:407–417CrossRefGoogle Scholar
  27. 27.
    Derouesné C (1993) Empirical evaluation of the “Cognitive difficulties scale” for Assessment of memory complaints in General practice: a study of 1628 Cognitively normal subjects Aged 45–75 years. Int J Geriatr Psychiatry 8:599–607CrossRefGoogle Scholar
  28. 28.
    McNair D, Kahn R (1983) Self-assessment of cognitive deficits. Assess Geriatr Psychopharmacol Mark Powley 137–143Google Scholar
  29. 29.
    Touvier M, Kesse-Guyot E, Mejean C et al (2011) Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. BrJNutr 105:1055–1064Google Scholar
  30. 30.
    Lassale C, Castetbon K, Laporte F et al (2016) Correlations between fruit, vegetables, fish, vitamins, and fatty acids estimated by web-based nonconsecutive dietary records and respective biomarkers of nutritional status. J Acad Nutr Diet 116:427–438CrossRefGoogle Scholar
  31. 31.
    Le Moullec N, Deheeger M, Preziosi P et al (1996) Validation du manuel photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX [Validation of the photo manual used for the dietary assessment of the SU.VI.MAX study]. Cah Nutr Diet 31:158–164Google Scholar
  32. 32.
    Etude NutriNet-Santé (2013) Table de Composition des Aliments de l’étude NutriNet-Santé [NutriNet-Santé Study Food Composition Database]. Economica, ParisGoogle Scholar
  33. 33.
    Institut National de la Statistique et des Etudes Economiques (INSEE) Website (2017) Définition des Unités de Consommation [Consumption Units definition]Google Scholar
  34. 34.
    Estaquio C, Kesse-Guyot E, Deschamps V et al (2009) Adherence to the French programme national nutrition sante guideline score is associated with better nutrient intake and nutritional status. J Am Diet Assoc 109:1031–1041CrossRefGoogle Scholar
  35. 35.
    Führer R, Rouillon F (1989) The French version of the Center for epidemiologic studies-depression scale. Psychiatr Psychol 4:163–166Google Scholar
  36. 36.
    Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27CrossRefGoogle Scholar
  37. 37.
    Finkelstein DM (1986) A proportional hazards model for interval-censored failure time data. Biometrics 42:845–854CrossRefGoogle Scholar
  38. 38.
    Solfrizzi V, Custodero C, Lozupone M et al (2017) Relationships of dietary patterns, foods, and micro- and macronutrients with Alzheimer’s disease and late-life cognitive disorders: a systematic review. J Alzheimers Dis JAD 59:815–849. CrossRefGoogle Scholar
  39. 39.
    van de Rest O, Berendsen AA, Haveman-Nies A, de Groot LC (2015) Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr Bethesda Md 6:154–168. CrossRefGoogle Scholar
  40. 40.
    Yusufov M, Weyandt LL, Piryatinsky I (2017) Alzheimer’s disease and diet: a systematic review. Int J Neurosci 127:161–175. CrossRefGoogle Scholar
  41. 41.
    Small GW, Siddarth P, Ercoli LM et al (2013) Healthy behavior and memory self-reports in young, middle-aged, and older adults. Int Psychogeriatr 25:981–989. CrossRefGoogle Scholar
  42. 42.
    Hercberg S, Chat-Yung S, Chaulia M (2008) The French national nutrition and health program: 2001–2006–2010. Int J Public Health 53:68–77CrossRefGoogle Scholar
  43. 43.
    Marvel CL, Paradiso S (2004) Cognitive and neurological impairment in mood disorders. Psychiatr Clin N Am 27:19–36. vii–viii.CrossRefGoogle Scholar
  44. 44.
    Gałecki P, Talarowska M, Anderson G et al (2015) Mechanisms underlying neurocognitive dysfunctions in recurrent major depression. Med Sci Monit Int Med J Exp Clin Res 21:1535–1547. Google Scholar
  45. 45.
    Vauzour D, Camprubi-Robles M, Miquel-Kergoat S et al (2017) Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev 35:222–240. CrossRefGoogle Scholar
  46. 46.
    Meeusen R (2014) Exercise, nutrition and the brain. Sports Med Auckl NZ 44(Suppl 1):S47–S56. CrossRefGoogle Scholar
  47. 47.
    Del Parigi A, Panza F, Capurso C, Solfrizzi V (2006) Nutritional factors, cognitive decline, and dementia. Brain Res Bull 69:1–19. CrossRefGoogle Scholar
  48. 48.
    Solfrizzi V, Panza F, Capurso A (2003) The role of diet in cognitive decline. J Neural Transm Vienna Austria 1996 110:95–110. Google Scholar
  49. 49.
    Pistollato F, Sumalla Cano S, Elio I et al (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74:624–634. CrossRefGoogle Scholar
  50. 50.
    Simpson HL, Campbell BJ (2015) Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther 42:158–179. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre d’Epidémiologie et Statistiques Sorbonne Paris CitéUniversité Paris 13, Inserm (U1153), Cnam, Inra (U1125), COMUE Sorbonne Paris CitéBobignyFrance
  2. 2.Département de Santé PubliqueHôpital AvicenneBobignyFrance

Personalised recommendations