Journal of Neurology

, Volume 264, Issue 6, pp 1136–1145 | Cite as

An eye-tracker controlled cognitive battery: overcoming verbal-motor limitations in ALS

  • Barbara PolettiEmail author
  • Laura Carelli
  • Federica Solca
  • Annalisa Lafronza
  • Elisa Pedroli
  • Andrea Faini
  • Nicola Ticozzi
  • Andrea Ciammola
  • Paolo Meriggi
  • Pietro Cipresso
  • Dorothée Lulé
  • Albert C. Ludolph
  • Giuseppe Riva
  • Vincenzo Silani
Original Communication


We assessed language, attention, executive, and social cognition abilities in a sample of patients with Amyotrophic Lateral Sclerosis (ALS) by means of a recently developed cognitive battery based on oculomotor control with eye-tracking (ET) technology. Twenty-one ALS patients and 21 age- and education-matched healthy subjects underwent the ET-based cognitive assessment, together with the standard cognitive screening tools [Frontal Assessment Battery (FAB); Montreal Cognitive Assessment (MoCA); and Digit Sequencing Task]. Psychological measures of anxiety (State-Trait Anxiety Inventory-Y) and depression (Beck Depression Inventory) were also collected, and an ET usability questionnaire was administered. For patients, clinical and respiratory examinations were also performed, together with behavioural assessment (Frontal Behavioural Inventory). The developed battery discriminated among patients and controls with regard to measures of verbal fluency, frontal abilities, and social cognition. Measures of diagnostic utility confirmed a higher diagnostic accuracy of such ET-based tests with respect to FAB; similar diagnostic accuracy emerged when comparing them to the other standard cognitive tools (MoCA, WM). Usability ratings about the ET tests were comparable among the two groups. The ET-based neuropsychological battery demonstrated good levels of diagnostic accuracy and usability in a clinical population of non-demented ALS patients, compared to matched healthy controls. Future studies will be aimed at further investigate validity and usability components by recruiting larger sample of patients, both in moderate-to-severe stages of the disease and affected by more severe cognitive impairment.


Amyotrophic lateral sclerosis Eye tracker Cognitive assessment Behavioural assessment Oculomotor control Verbal-motor limitations 



The authors would like to thank patients and their relatives, together with the other volunteers who participated to this research. The presented work was partly funded by the “eBrain: BCI and ET for ALS” Lombardy Region project.

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standard

The study has been approved by our Institute ethic committee and has, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Supplementary material

Video presenting the RCPM adaptation (MOV 11,036 kb)

Video presenting the RME adaptation (MOV 12369 kb)

415_2017_8506_MOESM3_ESM.pdf (105 kb)
Diagnostic parameters for the standard and ET-based tests’ variables (PDF 106 kb)
415_2017_8506_MOESM4_ESM.pdf (166 kb)
Diagnostic parameters for ET-based VF tests (PDF 166 kb)


  1. 1.
    Phukan J, Elamin M, Bede P et al (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83(1):102–108. doi: 10.1136/jnnp-2011-300188 CrossRefPubMedGoogle Scholar
  2. 2.
    Strong MJ, Grace GM, Freedman M et al (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioral syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146. doi: 10.1080/17482960802654364 CrossRefPubMedGoogle Scholar
  3. 3.
    Beeldman E, Raaphorst J, Klein Twennaar M et al (2015) The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp--310734 PubMedGoogle Scholar
  4. 4.
    Consonni M, Catricalà E, Dalla Bella E et al (2016) Beyond the consensus criteria: multiple cognitive profiles in amyotrophic lateral sclerosis? Cortex 81:162–167. doi: 10.1016/j.cortex.2016.04.014 CrossRefPubMedGoogle Scholar
  5. 5.
    Goldstein LH, Abrahams S (2013) Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol 12:368–380. doi: 10.1016/S1474-4422(13)70026-7 CrossRefPubMedGoogle Scholar
  6. 6.
    Abrahams S, Newton J, Niven E et al (2014) Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener 15:9–14. doi: 10.3109/21678421.2013.805784 CrossRefPubMedGoogle Scholar
  7. 7.
    Poletti B, Solca F, Carelli L et al (2016) The validation of the Italian Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener 24:1–10. doi: 10.1080/21678421.2016.1183679 Google Scholar
  8. 8.
    Lulé D, Burkhardt C, Abdulla S et al (2015) The Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen: a cross-sectional comparison of established screening tools in a German–Swiss population. Amyotroph Lateral Scler Frontotemporal Degener 16(1–2):16–23. doi: 10.3109/21678421.2014.959451 CrossRefPubMedGoogle Scholar
  9. 9.
    Ye S, Ji Y, Li C, He J, Liu X, Fan D (2016) The Edinburgh Cognitive and Behavioural ALS Screen in a Chinese Amyotrophic Lateral Sclerosis Population. PLoS One 11(5):155496. doi: 10.1371/journal.pone.0155496 Google Scholar
  10. 10.
    Hicks SL, Sharma R, Khan AN et al (2013) An eye-tracking version of the trail-making test. PLoS One 8(12):e84061. doi: 10.1371/journal.pone.0084061 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Proudfoot M, Menke RAL, Sharma R et al (2015) Eye-tracking in amyotrophic lateral sclerosis: a longitudinal study of saccadic and cognitive tasks. Amyotroph Lateral Sclerosis Frontotemporal Degener 17(1–2):101–111. doi: 10.3109/21678421.2015.1054292 Google Scholar
  12. 12.
    Keller J, Gorges M, Horn HT et al (2015) Eye-tracking controlled cognitive function tests in patients with amyotrophic lateral sclerosis: a controlled proof-of-principle study. J Neurol 262:1918–1926. doi: 10.1007/s00415-015-7795-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Iversen IH, Ghanayim N, Kübler A, Neumann N, Birbaumer N, Kaiser J (2008) A brain-computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clin Neurophysiol 119:2214–2223. doi: 10.1016/j.clinph.2008.07.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Perego P, Turconi AC, Andreoni G et al (2011) Cognitive ability assessment by brain-computer interface validation of a new assessment method for cognitive abilities. J Neurosci Methods 201:239–250. doi: 10.1016/j.jneumeth.2011.06.025 CrossRefPubMedGoogle Scholar
  15. 15.
    Keller J, Gorges M, Aho-Özhan HE et al (2016) Eye-tracking control to assess cognitive functions in patients with amyotrophic lateral sclerosis. J Vis Exp. doi: 10.3791/54634 Google Scholar
  16. 16.
    Cipresso P, Carelli L, Solca F et al (2012) The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav 2(4):479–498. doi: 10.1002/brb3.57 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cipresso P, Meriggi P, Carelli L et al (2013) Cognitive assessment of executive functions using brain computer interface and eye-tracking. EAI Endors Trans Ambient Syst 4:e4. doi: 10.4108/trans.amsys.01-06.2013.e4 CrossRefGoogle Scholar
  18. 18.
    Poletti B, Carelli L, Solca F et al (2016) Cognitive assessment in amyotrophic lateral sclerosis by means of P300-Brain Computer Interface: a preliminary study. Amyotroph Lateral Scler Frontotemporal Degener 17(7–8):473–481. doi: 10.1080/21678421.2016.1181182 CrossRefGoogle Scholar
  19. 19.
    Poletti B, Carelli L, Solca F et al (2017) An eye-tracking controlled neuropsychological battery for cognitive assessment in neurological diseases. Neurol Sci. doi: 10.1007/s10072-016-2807-3 PubMedGoogle Scholar
  20. 20.
    Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of neurology Research Group on Motor Neuron Disease (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299. doi: 10.1080/146608200300079536 CrossRefPubMedGoogle Scholar
  21. 21.
    Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessment of respiratory function. J Neurol Sci 169:13–21. doi: 10.1016/S0022-510X(99)00210-5 CrossRefPubMedGoogle Scholar
  22. 22.
    Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB. A frontal assessment battery at bedside. Neurology 55:1621–1626. doi: 10.1212/WNL.55.11.1621 CrossRefPubMedGoogle Scholar
  23. 23.
    Pirani A, Nasreddine ZS, Tulipani C, Neri M (2007) Montreal Cognitive Assessment (MOCA): uno strumento rapido per lo screening del Mild Cognitive Impairment. Dati preliminari della versione italiana. Atti IV Congresso Regionale Associazione Italiana Psicogeriatria, BolognaGoogle Scholar
  24. 24.
    D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 3(66):115–142. doi: 10.1146/annurev-psych-010814-015031 CrossRefGoogle Scholar
  25. 25.
    Anselmetti S, Poletti S, Ermoli E et al (2008) The Brief Assessment of Cognition in Schizophrenia. Normative data for the Italian population. Neurol Sci 29(2):85–92. doi: 10.1007/s10072-008-0866-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571CrossRefPubMedGoogle Scholar
  27. 27.
    Spielberger CD, Gorsuch RL, Lushene R (2007) The State Trait Anxiety Inventory (STAI). Test Manual for Form X. Consulting Psychologist Press, Palo Alto (trad. Italiana a cura di Lazzari R. E Pancheri P., “S.T.A.I. Questionario di autovalutazione dell’ansia di stato e di tratto”. Organizzazioni Speciali, Firenze,1980)Google Scholar
  28. 28.
    Alberici A, Geroldi C, Cotelli M (2007) The Frontal Behavioural Inventory (Italian version) differentiates frontotemporal lobar degeneration variants from Alzheimer’s disease. Neurol Sci 28:80–86CrossRefPubMedGoogle Scholar
  29. 29.
    Novelli G, Papagno C, Capitani E, Laiacona N, Vallar G, Cappa SF (1986) Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Archivio di Psicol Neurol e Psichiatria 47(4):477–506Google Scholar
  30. 30.
    De Renzi E, Vignolo LA (1962) The Token Test: a sensitive test to detect receptive disturbances in aphasics. Brain 85:556–678. doi: 10.1093/brain/85.4.665 CrossRefGoogle Scholar
  31. 31.
    Brickenkamp R, Zillmer E (1998) The d2 test of attention, 1st edn. Hogrefe & Huber Publishers, Seattle, WAGoogle Scholar
  32. 32.
    Raven JC (1948) The comparative assessment of intellectual ability. Br J Psychol 39:12–19. doi: 10.1111/j.2044-8295.1948.tb00198.x Google Scholar
  33. 33.
    Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2004) Modified card sorting test: normative data. J Clin Exp Neuropsychol 26(2):246–250CrossRefPubMedGoogle Scholar
  34. 34.
    Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (2001) The ‘‘Reading the Mind in the Eyes’’ test revised version: a study with normal adults, and adults with asperger syndrome or high-functioning autism. J Child Psychol Psychiat 42(2):241–251. doi: 10.1111/1469-7610.00715 CrossRefPubMedGoogle Scholar
  35. 35.
    Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123(pt 11):2189–2202. doi: 10.1093/brain/123.11.2189 CrossRefPubMedGoogle Scholar
  36. 36.
    Stansfield RB, Preston S, Bechara A (2003) Normative gambling task data: Analysis summary. Normative gambling task data: Analysis summary. University of Iowa, IowaGoogle Scholar
  37. 37.
    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35CrossRefPubMedGoogle Scholar
  38. 38.
    Strong MJ, Abrahams S, Goldstein LH et al (2017) Amyotrophic lateral sclerosis—frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 5:1–22. doi: 10.1080/21678421.2016.1267768 Google Scholar
  39. 39.
    Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6(11):994–1003CrossRefPubMedGoogle Scholar
  40. 40.
    Sedda A (2014) Disorders of emotional processing in amyotrophic lateral sclerosis. Curr Opin Neurol 27:659–665. doi: 10.1097/WCO.0000000000000147 CrossRefPubMedGoogle Scholar
  41. 41.
    Bora E (2017) Meta-analysis of social cognition in amyotrophic lateral sclerosis. Cortex 88:1–7. doi: 10.1016/j.cortex.2016.11.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Barbara Poletti
    • 1
    Email author
  • Laura Carelli
    • 1
  • Federica Solca
    • 1
  • Annalisa Lafronza
    • 1
  • Elisa Pedroli
    • 2
  • Andrea Faini
    • 3
  • Nicola Ticozzi
    • 1
    • 4
  • Andrea Ciammola
    • 1
  • Paolo Meriggi
    • 5
  • Pietro Cipresso
    • 2
  • Dorothée Lulé
    • 6
  • Albert C. Ludolph
    • 6
  • Giuseppe Riva
    • 2
    • 7
  • Vincenzo Silani
    • 1
    • 4
  1. 1.Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
  2. 2.Applied Technology for Neuro-Psychology LabIRCCS Istituto Auxologico ItalianoMilanItaly
  3. 3.Department of CardiovascularNeural and Metabolic Sciences, IRCCS Istituto Auxologico ItalianoMilanItaly
  4. 4.Department of Pathophysiology and Transplantation, “Dino Ferrari” CenterUniversità degli Studi di MilanoMilanItaly
  5. 5.ICT and Biomedical Technology Integration Unit, Centre for Innovation and Technology Transfer (CITT)Fondazione Don Carlo Gnocchi OnlusMilanItaly
  6. 6.Department of NeurologyUniversity of UlmUlmGermany
  7. 7.Department of PsychologyUniversità Cattolica del Sacro CuoreMilanItaly

Personalised recommendations