Advertisement

Journal of Neurology

, Volume 264, Issue 5, pp 955–962 | Cite as

Juvenile-onset myasthenia gravis: autoantibody status, clinical characteristics and genetic polymorphisms

  • Yu Hong
  • Geir Olve Skeie
  • Paraskevi Zisimopoulou
  • Katerina Karagiorgou
  • Socrates J. Tzartos
  • Xiang Gao
  • Yao-Xian Yue
  • Fredrik Romi
  • Xu Zhang
  • Hai-Feng LiEmail author
  • Nils Erik GilhusEmail author
Original Communication

Abstract

Myasthenia gravis (MG) is an autoimmune disorder mediated by antibodies against proteins at the neuromuscular junction. Juvenile-onset MG (JMG) has been reported to have special characteristics. It is still unclear whether there are any pathogenic and genetic differences between juvenile and adult MG. In this study, we evaluated the clinical characteristics, autoantibody status (antibodies against AChR, MuSK, LRP4, titin and RyR) and genetic susceptibility (CHRNA1, CTLA4 and AIRE) in 114 Chinese JMG patients, and compared with 207 young adult MG patients (onset age 18–40 years). JMG patients were classified into two subgroups: the very early onset group (<8 years) and puberty onset group (8–18 years). The very early onset MG patients had a higher proportion of ocular MG and thymus hyperplasia, compared with puberty onset MG and young adult MG (P < 0.05). AChR antibodies were found in majority of JMG patients and were associated with more severe disease (P < 0.05), while other antibodies were rare in JMG. Moreover, the very early onset MG had a more prominent genetic predisposition than puberty and adult MG, affecting the susceptible genes CHRNA1 and CTLA4. JMG has the same pathogenic background as adult MG, but has typical clinical features and a prominent genetic predisposition in very early onset patients (<8 years). Specific therapeutic considerations are needed.

Keywords

Juvenile onset myasthenia gravis Muscle specific kinase Acetylcholine receptor Gene polymorphisms Cholinergic receptor nicotinic alpha 1 (CHRNA1) Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 

Notes

Acknowledgements

This work was supported by Torbjørg Hauges’ Legacy, National Natural Science Foundation of China (No. 81070963), Natural Science Foundation of Shandong Province (No. ZR2010HM019), and Research Grant from Qilu Hospital of Shandong University (Qingdao) (QDKY20152D01).

Compliance with ethical standards

Conflicts of interest

Socrates J Tzartos has shares in the diagnostic laboratory Tzartos NeuroDiagnostics. All other authors declare no conflicts of interest.

Supplementary material

415_2017_8478_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Ackman JB, Verzosa S, Kovach AE, Louissaint A Jr, Lanuti M, Wright CD, Shepard JA, Halpern EF (2015) High rate of unnecessary thymectomy and its cause. Can computed tomography distinguish thymoma, lymphoma, thymic hyperplasia, and thymic cysts? Eur J Radiol 84:524–533CrossRefPubMedGoogle Scholar
  2. 2.
    Avidan N, Le Panse R, Berrih-Aknin S, Miller A (2014) Genetic basis of myasthenia gravis—a comprehensive review. J Autoimmun 52:146–153CrossRefPubMedGoogle Scholar
  3. 3.
    Berrih-Aknin S (2014) Myasthenia gravis: paradox versus paradigm in autoimmunity. J Autoimmun 52:1–28CrossRefPubMedGoogle Scholar
  4. 4.
    Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 52:90–100CrossRefPubMedGoogle Scholar
  5. 5.
    Chen X, Li S, Yang Y, Yang X, Liu Y, Liu Y, Hu W, Jin L, Wang X (2012) Genome-wide association study validation identifies novel loci for atherosclerotic cardiovascular disease. J Thromb Haemost 10:1508–1514CrossRefPubMedGoogle Scholar
  6. 6.
    Della Marina A, Trippe H, Lutz S, Schara U (2014) Juvenile myasthenia gravis: recommendations for diagnostic approaches and treatment. Neuropediatrics 45:75–83CrossRefPubMedGoogle Scholar
  7. 7.
    Finnis MF, Jayawant S (2011) Juvenile myasthenia gravis: a paediatric perspective. Autoimmune Dis 2011:404101PubMedPubMedCentralGoogle Scholar
  8. 8.
    George AJT, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272CrossRefPubMedGoogle Scholar
  9. 9.
    Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S (2016) Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat Rev Neurol 12:259–268CrossRefPubMedGoogle Scholar
  10. 10.
    Gilhus NE, Verschuuren JJ (2015) Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 14:1023–1036CrossRefPubMedGoogle Scholar
  11. 11.
    Giraud M, Taubert R, Vandiedonck C, Ke X, Levi-Strauss M, Pagani F, Baralle FE, Eymard B, Tranchant C, Gajdos P, Vincent A, Willcox N, Beeson D, Kyewski B, Garchon HJ (2007) An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 448:934–937CrossRefPubMedGoogle Scholar
  12. 12.
    Heckmann JM, Morrison KE, Emeryk-Szajewska B, Strugalska H, Bergoffen J, Willcox N, Newsom-Davis J (1996) Human muscle acetylcholine receptor alpha-subunit gene (CHRNA1) association with autoimmune myasthenia gravis in black, mixed-ancestry and Caucasian subjects. J Autoimmun 9:175–180CrossRefPubMedGoogle Scholar
  13. 13.
    Hong Y, Li H-F, Skeie GO, Romi F, Hao H-J, Zhang X, Gao X, Owe JF, Gilhus NE (2016) Autoantibody profile and clinical characteristics in a cohort of Chinese adult myasthenia gravis patients. J Neuroimmunol 298:51–57CrossRefPubMedGoogle Scholar
  14. 14.
    Jaretzki A 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB (2000) Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg 70:327–334CrossRefPubMedGoogle Scholar
  15. 15.
    Kaminski HJ (2016) Seronegative Myasthenia gravis—a vanishing disorder? JAMA Neurol 73:1055–1056CrossRefPubMedGoogle Scholar
  16. 16.
    Kanai T, Uzawa A, Kawaguchi N, Sakamaki T, Yoshiyama Y, Himuro K, Oda F, Kuwabara S (2016) HLA-DRB1*14 and DQB1*05 are associated with Japanese anti-MuSK antibody-positive myasthenia gravis patients. J Neurol Sci 363:116–118CrossRefPubMedGoogle Scholar
  17. 17.
    Leite MI, Jones M, Strobel P, Marx A, Gold R, Niks E, Verschuuren JJ, Berrih-Aknin S, Scaravilli F, Canelhas A, Morgan BP, Vincent A, Willcox N (2007) Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol 171:893–905CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li HF, Hong Y, Zhang X, Xie Y, Skeie GO, Hao HJ, Gilhus NE, Liang B, Yue YX, Zhang XJ, Gao X, Wang Q, Gao Z, Ding XJ, Song M (2016) Gene Polymorphisms for both auto-antigen and immune-modulating proteins are associated with the susceptibility of autoimmune myasthenia gravis. Mol Neurobiol. doi: 10.1007/s12035-016-0024-y PubMedCentralGoogle Scholar
  19. 19.
    Li W, Long C, Renjun L, Zhangxue H, Yin H, Wanwei L, Juan M, Yuan S (2015) Association of SCNN1A single nucleotide polymorphisms with neonatal respiratory distress syndrome. Sci Rep 5:17317CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lisak RP, Ragheb S (2012) The role of B cell-activating factor in autoimmune myasthenia gravis. Ann N Y Acad Sci 1274:60–67CrossRefPubMedGoogle Scholar
  21. 21.
    Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P (2013) The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 12:875–884CrossRefPubMedGoogle Scholar
  22. 22.
    Motobayashi M, Inaba Y, Nishimura T, Kobayashi N, Nakazawa Y, Koike K (2015) An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis. Pediatr Neurol 52:404–409CrossRefPubMedGoogle Scholar
  23. 23.
    Nel M, Buys JM, Rautenbach R, Mowla S, Prince S, Heckmann JM (2016) The African-387 C>T TGFB1 variant is functional and associates with the ophthalmoplegic complication in juvenile myasthenia gravis. J Hum Genet 61:307–316CrossRefPubMedGoogle Scholar
  24. 24.
    Neretin V, Serova LD, Agafonov BV, Tsuman VG, Gekht BM, Sidorova OP, Nalivkin AE (2001) Antigens of histocompatibility in children with myasthenia gravis. Zhurnal Nevrol Psikhiatrii Imeni SS Korsakova 101:44–48Google Scholar
  25. 25.
    Pirronti T, Rinaldi P, Batocchi AP, Evoli A, Di Schino C, Marano P (2002) Thymic lesions and myasthenia gravis. Diagnosis based on mediastinal imaging and pathological findings. Acta Radiol 43:380–384CrossRefPubMedGoogle Scholar
  26. 26.
    Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150CrossRefPubMedGoogle Scholar
  27. 27.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Renton AE, Pliner HA, Provenzano C et al (2015) A Genome-wide association study of myasthenia gravis. JAMA Neurol 72:396–404CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sun L, Meng Y, Xie Y, Zhang H, Zhang Z, Wang X, Jiang B, Li W, Li Y, Yang Z (2014) CTLA4 variants and haplotype contribute genetic susceptibility to myasthenia gravis in northern Chinese population. PLoS One 9:e101986CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Teft WA, Kirchhof MG, Madrenas J (2006) A molecular perspective of CTLA-4 function. Annu Rev Immunol 24:65–97CrossRefPubMedGoogle Scholar
  31. 31.
    Tsonis AI, Zisimopoulou P, Lazaridis K et al (2015) MuSK autoantibodies in myasthenia gravis detected by cell based assay—a multinational study. J Neuroimmunol 284:10–17CrossRefPubMedGoogle Scholar
  32. 32.
    Wang W, Chen YP, Wang ZK, Wei DN, Yin L (2013) A cohort study on myasthenia gravis patients in China. Neurol Sci 34:1759–1764CrossRefPubMedGoogle Scholar
  33. 33.
    Wang XB, Pirskanen R, Giscombe R, Lefvert AK (2008) Two SNPs in the promoter region of the CTLA-4 gene affect binding of transcription factors and are associated with human myasthenia gravis. J Intern Med 263:61–69CrossRefPubMedGoogle Scholar
  34. 34.
    Ygberg S, Nilsson A (2012) The developing immune system—from foetus to toddler. Acta Paediatr 101:120–127CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang X, Yang M, Xu J, Zhang M, Lang B, Wang W, Vincent A (2007) Clinical and serological study of myasthenia gravis in HuBei Province, China. J Neurol Neurosurg Psychiatry 78:386–390CrossRefPubMedGoogle Scholar
  36. 36.
    Zheng S, Dou C, Xin N, Wang J, Wang J, Li P, Fu L, Shen X, Cui G, Dong R, Lu J, Zhang Y (2013) Expression of interleukin-22 in myasthenia gravis. Scand J Immunol 78:98–107CrossRefPubMedGoogle Scholar
  37. 37.
    Zisimopoulou P, Evangelakou P, Tzartos J et al (2014) A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 52:139–145CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Clinical MedicineUniversity of BergenBergenNorway
  2. 2.Department of NeurologyHaukeland University HospitalBergenNorway
  3. 3.Department of NeurobiologyHellenic Pasteur InstituteAthensGreece
  4. 4.Tzartos NeuroDiagnosticsAthensGreece
  5. 5.Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
  6. 6.Department of NeurologyQilu Hospital of Shandong UniversityJinanChina

Personalised recommendations