Advertisement

Quantitative analysis of noncoding RNA from paired fresh and formalin-fixed paraffin-embedded brain tissues

  • Yehui LvEmail author
  • Shiying Li
  • Zhihong Li
  • Ruiyang Tao
  • Yu Shao
  • Yijiu ChenEmail author
Original Article

Abstract

Formalin-fixed paraffin-embedded (FFPE) tissues are commonly used both clinically and in forensic pathology. Recently, noncoding RNA (ncRNA) has attracted interest among molecular medical researchers. However, it remains unclear whether newly identified ncRNAs, such as long noncoding RNA (lncRNA) and circular RNA (circRNA), remain stable for downstream molecular analysis in FFPE tissues. Here, we assessed the feasibility of using autoptic FFPE brain tissues from eight individuals to perform quantitative molecular analyses. Selected RNA targets (9 mRNAs and 15 ncRNAs) with different amplicon lengths were studied by RT-qPCR in paired fresh and FFPE specimens. For RNA quality assessment, RNA purity and yield were comparable between the two sample cohorts; however, the RNA integrity number decreased significantly during FFPE sampling. Amplification efficiency also displayed certain variability related with amplicon length and RNA species. We found molecular evidence that short amplicons of mRNA, lncRNA, and circRNA were amplified more efficiently than long amplicons. With the assistance of RefFinder, 5S, SNORD48, miR-103a, and miR-125b were selected as reference genes given their high stability. After normalization, we found that short amplicon markers (e.g., ACTB mRNA and MALAT1 lncRNA) exhibited high consistency of quantification in paired fresh/FFPE samples. In particular, circRNAs (XPO1, HIPK3, and TMEM56) presented relatively consistent and stable expression profiles in FFPE tissues compared with their corresponding linear transcripts. Additionally, we evaluated the influence of prolonged storage time on the amplification of gene transcripts and found that short amplicons still work effectively in archived FFPE biospecimens. In conclusion, our findings demonstrate the possibility of performing accurate quantitative analysis of ncRNAs using short amplicons and standardized RT-qPCR assays in autopsy-derived FFPE samples.

Keywords

Forensic science Forensic pathology Formalin-fixed paraffin-embedded (FFPE) RNA Noncoding RNA (ncRNA) Real-time quantitative polymerase chain reaction (RT-qPCR) 

Notes

Acknowledgments

We are grateful to the Department of Forensic Medicine, Fudan University, for providing experimental support to complete this work. Our gratitude also goes to Kaijun Ma and his teams for their advices and assistance throughout this study.

Funding

This study was funded by Open Project of Shanghai Key Laboratory of Forensic Medicine and Seed Fund of Shanghai University of Medicine & Health Sciences.

Compliance with ethical standards

The study protocol and all experimental procedures were approved by the ethics committee of the Academy of Forensic Science, and this research was performed in accordance with the principles expressed in the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

414_2019_2210_MOESM1_ESM.xls (51 kb)
ESM 1 (XLS 51 kb)
414_2019_2210_MOESM2_ESM.docx (1.3 mb)
ESM 2 (DOCX 1330 kb)

References

  1. 1.
    Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11(9):1026–1030Google Scholar
  2. 2.
    Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39(1):75–85.  https://doi.org/10.2144/05391rv01 CrossRefPubMedGoogle Scholar
  3. 3.
    Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15(7):469–479.  https://doi.org/10.1038/nrg3681 CrossRefPubMedGoogle Scholar
  4. 4.
    Sullenger BA, Nair S (2016) From the RNA world to the clinic. Science 352(6292):1417–1420.  https://doi.org/10.1126/science.aad8709 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Haque F, Pi F, Zhao Z, Gu S, Hu H, Yu H, Guo P (2018) RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications. Wiley Interdisciplinary Rev RNA 9(1).  https://doi.org/10.1002/wrna.1452 CrossRefGoogle Scholar
  6. 6.
    Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17.  https://doi.org/10.1007/978-3-319-42059-2_1 CrossRefPubMedGoogle Scholar
  7. 7.
    Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2018) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol.  https://doi.org/10.1002/jcp.27486 CrossRefGoogle Scholar
  8. 8.
    Shi X, Sun M, Liu H, Yao Y, Song Y (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339(2):159–166.  https://doi.org/10.1016/j.canlet.2013.06.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338.  https://doi.org/10.1038/nature11928 CrossRefPubMedGoogle Scholar
  10. 10.
    Yu S, Na JY, Lee YJ, Kim KT, Park JT, Kim HS (2015) Forensic application of microRNA-706 as a biomarker for drowning pattern identification. Forensic Sci Int 255:96–101.  https://doi.org/10.1016/j.forsciint.2015.06.011 CrossRefPubMedGoogle Scholar
  11. 11.
    Kaija H, Pakanen L, Porvari K (2019) RNU6B, a frequent reference in miRNA expression studies, differentiates between deaths caused by hypothermia and chronic cardiac ischemia. Int J Legal Med.  https://doi.org/10.1007/s00414-019-02041-0
  12. 12.
    Lv YH, Ma JL, Pan H, Zeng Y, Tao L, Zhang H, Li WC, Ma KJ, Chen L (2017) Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci Med Pathol 13(1):20–27.  https://doi.org/10.1007/s12024-016-9827-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Kim JY, Kim Y, Cha HK, Lim HY, Kim H, Chung S, Hwang JJ, Park SH, Son GH (2017) Cell death-associated ribosomal RNA cleavage in postmortem tissues and its forensic applications. Mol Cell 40(6):410–417.  https://doi.org/10.14348/molcells.2017.0039 CrossRefGoogle Scholar
  14. 14.
    Tu C, Du T, Ye X, Shao C, Xie J, Shen Y (2019) Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg Med (Tokyo) 38:51–57.  https://doi.org/10.1016/j.legalmed.2019.04.002 CrossRefGoogle Scholar
  15. 15.
    Sharma S, Singh D, Kaul D (2015) AATF RNome has the potential to define post mortem interval. Forensic Sci Int 247:e21–e24.  https://doi.org/10.1016/j.forsciint.2014.12.008 CrossRefPubMedGoogle Scholar
  16. 16.
    Etich J, Bergmeier V, Pitzler L, Brachvogel B (2017) Identification of a reference gene for the quantification of mRNA and miRNA expression during skin wound healing. Connect Tissue Res 58(2):196–207.  https://doi.org/10.1080/03008207.2016.1210606 CrossRefPubMedGoogle Scholar
  17. 17.
    Aunin E, Broadley D, Ahmed MI, Mardaryev AN, Botchkareva NV (2017) Exploring a role for regulatory miRNAs in wound healing during ageing:involvement of miR-200c in wound repair. Sci Rep 7(1):3257.  https://doi.org/10.1038/s41598-017-03331-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sirker M, Fimmers R, Schneider PM, Gomes I (2017) Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Sci Int Genet 27:41–49.  https://doi.org/10.1016/j.fsigen.2016.11.012 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Y, Liu B, Shao C, Xu H, Xue A, Zhao Z, Shen Y, Tang Q, Xie J (2017) Evaluation of the inclusion of circular RNAs in mRNA profiling in forensic body fluid identification. Int J Legal Med 132:43–52.  https://doi.org/10.1007/s00414-017-1690-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang S, Wang Z, Tao R, He G, Liu J, Li C, Hou Y (2019) The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: a proof-of-principle study. Forensic Sci Int Genet 39:129–135.  https://doi.org/10.1016/j.fsigen.2019.01.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Kulstein G, Marienfeld R, Miltner E, Wiegand P (2016) Automation of DNA and miRNA co-extraction for miRNA-based identification of human body fluids and tissues. Electrophoresis 37(21):2742–2750.  https://doi.org/10.1002/elps.201600365 CrossRefPubMedGoogle Scholar
  22. 22.
    Xiong K, Long L, Zhang X, Qu H, Deng H, Ding Y, Cai J, Wang S, Wang M, Liao L, Huang J, Yi CX, Yan J (2017) Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro. Toxicol in Vitro 44:1–10.  https://doi.org/10.1016/j.tiv.2017.06.009 CrossRefPubMedGoogle Scholar
  23. 23.
    Tang ZC, Guo YD, Zhang XW, Shi J, Yang KT, Li XL, Chen YQ, Cai JF (2012) Identification of the forensically important beetles Nicrophorus japonicus, Ptomascopus plagiatus and Silpha carinata (Coleoptera: Silphidae) based on 16S rRNA gene in China. Trop Biomed 29(3):493–498PubMedGoogle Scholar
  24. 24.
    Yusseff-Vanegas S, Agnarsson I (2016) Molecular phylogeny of the forensically important genus Cochliomyia (Diptera: Calliphoridae). Zookeys 609:107–120.  https://doi.org/10.3897/zookeys.609.8638 CrossRefGoogle Scholar
  25. 25.
    Wu Y, Ai M, Bardeesi ASA, Xu L, Zheng J, Zheng D, Yin K, Wu Q, Zhang L, Huang L, Cheng J (2017) Brugada syndrome: a fatal disease with complex genetic etiologies – still a long way to go. Forensic Sci Res 2(3):115–125.  https://doi.org/10.1080/20961790.2017.1333203 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Siebolts U, Varnholt H, Drebber U, Dienes HP, Wickenhauser C, Odenthal M (2009) Tissues from routine pathology archives are suitable for microRNA analyses by quantitative PCR. J Clin Pathol 62(1):84–88.  https://doi.org/10.1136/jcp.2008.058339 CrossRefPubMedGoogle Scholar
  27. 27.
    Kong H, Zhu M, Cui F, Wang S, Gao X, Lu S, Wu Y, Zhu H (2014) Quantitative assessment of short amplicons in FFPE-derived long-chain RNA. Sci Rep 4:7246.  https://doi.org/10.1038/srep07246 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jose V, Fumagalli D, Rothe F, Majjaj S, Loi S, Michiels S, Sotiriou C (2018) Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays. PLoS One 13(8):e0203346.  https://doi.org/10.1371/journal.pone.0203346 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Haynes HR, Killick-Cole CL, Hares KM, Redondo J, Kemp KC, Moutasim KA, Faulkner C, Wilkins A, Kurian KM (2018) Evaluation of the quality of RNA extracted from archival FFPE glioblastoma and epilepsy surgical samples for gene expression assays. J Clin Pathol 71(8):695–701.  https://doi.org/10.1136/jclinpath-2017-204969 CrossRefPubMedGoogle Scholar
  30. 30.
    Eisele S, Krumbholz M, Fischer MT, Mohan H, Junker A, Arzberger T, Hohlfeld R, Bradl M, Lassmann H, Meinl E (2012) Prospects of transcript profiling for mRNAs and MicroRNAs using formalin-fixed and paraffin-embedded dissected autoptic multiple sclerosis lesions. Brain Pathol 22(5):607–618.  https://doi.org/10.1111/j.1750-3639.2012.00564.x CrossRefPubMedGoogle Scholar
  31. 31.
    Muciaccia B, Vico C, Aromatario M, Fazi F, Cecchi R (2015) Molecular analysis of different classes of RNA molecules from formalin-fixed paraffin-embedded autoptic tissues: a pilot study. Int J Legal Med 129(1):11–21.  https://doi.org/10.1007/s00414-014-1066-1 CrossRefPubMedGoogle Scholar
  32. 32.
    Kakimoto Y, Kamiguchi H, Ochiai E, Satoh F, Osawa M (2015) MicroRNA stability in postmortem FFPE tissues: quantitative analysis using Autoptic samples from acute myocardial infarction patients. PLoS One 10(6):e0129338.  https://doi.org/10.1371/journal.pone.0129338 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bass BP, Engel KB, Greytak SR, Moore HM (2014) A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen? Arch Pathol Lab Med 138(11):1520–1530.  https://doi.org/10.5858/arpa.2013-0691-RA CrossRefPubMedGoogle Scholar
  34. 34.
    Lv YH, Ma JL, Pan H, Zhang H, Li WC, Xue AM, Wang HJ, Ma KJ, Chen L (2016) RNA degradation as described by a mathematical model for postmortem interval determination. J Forensic Legal Med 44:43–52.  https://doi.org/10.1016/j.jflm.2016.08.015 CrossRefGoogle Scholar
  35. 35.
    Chapman JR, Helin AS, Wille M, Atterby C, Jarhult JD, Fridlund JS, Waldenstrom J (2016) A panel of stably expressed reference genes for real-time qPCR gene expression studies of mallards (Anas platyrhynchos). PLoS One 11(2):e0149454.  https://doi.org/10.1371/journal.pone.0149454 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang H, Zhang P, Ma KJ, Lv YH, Li WC, Luo CL, Li LL, Shen YW, He M, Jiang JQ, Chen L (2013) The selection of endogenous genes in human postmortem tissues. Sci Justice 53(2):115–120.  https://doi.org/10.1016/j.scijus.2012.11.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Koppelkamm A, Vennemann B, Fracasso T, Lutz-Bonengel S, Schmidt U, Heinrich M (2010) Validation of adequate endogenous reference genes for the normalisation of qPCR gene expression data in human post mortem tissue. Int J Legal Med 124(5):371–380.  https://doi.org/10.1007/s00414-010-0433-9 CrossRefPubMedGoogle Scholar
  38. 38.
    Moushi A, Michailidou K, Soteriou M, Cariolou M, Bashiardes E (2018) MicroRNAs as possible biomarkers for screening of aortic aneurysms: a systematic review and validation study. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals 23(3):253–264.  https://doi.org/10.1080/1354750x.2018.1423704 CrossRefGoogle Scholar
  39. 39.
    Soes S, Sorensen BS, Alsner J, Overgaard J, Hager H, Hansen LL, Kristensen LS (2013) Identification of accurate reference genes for RT-qPCR analysis of formalin-fixed paraffin-embedded tissue from primary non-small cell lung cancers and brain and lymph node metastases. Lung Cancer 81(2):180–186.  https://doi.org/10.1016/j.lungcan.2013.04.007 CrossRefPubMedGoogle Scholar
  40. 40.
    Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T (2016) Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 6:37116.  https://doi.org/10.1038/srep37116 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    de Biase D, Visani M, Morandi L, Marucci G, Taccioli C, Cerasoli S, Baruzzi A, Pession A, Group PS (2012) miRNAs expression analysis in paired fresh/frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time pCR. PLoS One 7(4):e35596.  https://doi.org/10.1371/journal.pone.0035596 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sauer E, Babion I, Madea B, Courts C (2014) An evidence based strategy for normalization of quantitative PCR data from miRNA expression analysis in forensic organ tissue identification. Forensic Sci Int Genet 13:217–223.  https://doi.org/10.1016/j.fsigen.2014.08.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Mase M, Grasso M, Avogaro L, D’Amato E, Tessarolo F, Graffigna A, Denti MA, Ravelli F (2017) Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation. Sci Rep 7:41127.  https://doi.org/10.1038/srep41127 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mao Q, Zhang L, Guo Y, Sun L, Liu S, He P, Huang R, Sun L, Chen S, Zhang H, Xie P (2016) Identification of suitable reference genes for BDV-infected primary rat hippocampal neurons. Mol Med Rep 14(6):5587–5594.  https://doi.org/10.3892/mmr.2016.5959 CrossRefPubMedGoogle Scholar
  45. 45.
    Ma J, Pan H, Zeng Y, Lv Y, Zhang H, Xue A, Jiang J, Ma K, Chen L (2015) Exploration of the R code-based mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures. Forensic Sci Med Pathol 11(4):530–537.  https://doi.org/10.1007/s12024-015-9703-7 CrossRefPubMedGoogle Scholar
  46. 46.
    Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A (2013) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97:69–80.  https://doi.org/10.1016/j.brainresbull.2013.06.001 CrossRefPubMedGoogle Scholar
  47. 47.
    Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, Triller A, Spector DL, Bessis A (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29(18):3082–3093.  https://doi.org/10.1038/emboj.2010.199 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY) 19(2):141–157.  https://doi.org/10.1261/rna.035667.112 CrossRefGoogle Scholar
  49. 49.
    Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215.  https://doi.org/10.1038/ncomms11215 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefPubMedGoogle Scholar
  51. 51.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefGoogle Scholar
  52. 52.
    Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M (2015) How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 3:9–16.  https://doi.org/10.1016/j.bdq.2015.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Groelz D, Sobin L, Branton P, Compton C, Wyrich R, Rainen L (2013) Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Exp Mol Pathol 94(1):188–194.  https://doi.org/10.1016/j.yexmp.2012.07.002 CrossRefPubMedGoogle Scholar
  54. 54.
    Wimmer I, Troscher AR, Brunner F, Rubino SJ, Bien CG, Weiner HL, Lassmann H, Bauer J (2018) Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples. Sci Rep 8(1):6351.  https://doi.org/10.1038/s41598-018-24781-6 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kalmar A, Wichmann B, Galamb O, Spisak S, Toth K, Leiszter K, Tulassay Z, Molnar B (2013) Gene expression analysis of normal and colorectal cancer tissue samples from fresh frozen and matched formalin-fixed, paraffin-embedded (FFPE) specimens after manual and automated RNA isolation. Methods 59(1):S16–S19.  https://doi.org/10.1016/j.ymeth.2012.09.011 CrossRefPubMedGoogle Scholar
  56. 56.
    Greytak SR, Engel KB, Bass BP, Moore HM (2015) Accuracy of molecular data generated with FFPE biospecimens: lessons from the literature. Cancer Res 75(8):1541–1547.  https://doi.org/10.1158/0008-5472.can-14-2378 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Belousova EA, Filipenko ML, Kushlinskii NE (2018) Circular RNA: new regulatory molecules. Bull Exp Biol Med 164(6):803–815.  https://doi.org/10.1007/s10517-018-4084-z CrossRefPubMedGoogle Scholar
  58. 58.
    Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and Cancer: a new paradigm. Cancer Res 77(15):3965–3981.  https://doi.org/10.1158/0008-5472.can-16-2634 CrossRefPubMedGoogle Scholar
  59. 59.
    Jiang YJ, Cao SQ, Gao LB, Wang YY, Zhou B, Hu X, Pu Y, Li ZL, Wang Q, Xiao X, Zhao L, Wang S, Liang WB, Zhang L (2018) Circular ribonucleic acid expression profile in mouse cortex after traumatic brain injury. J Neurotrauma.  https://doi.org/10.1089/neu.2018.5647 CrossRefGoogle Scholar
  60. 60.
    Birdsill AC, Walker DG, Lue L, Sue LI, Beach TG (2011) Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank 12(4):311–318.  https://doi.org/10.1007/s10561-010-9210-8 CrossRefPubMedGoogle Scholar
  61. 61.
    White K, Yang P, Li L, Farshori A, Medina AE, Zielke HR (2018) Effect of postmortem interval and years in storage on RNA quality of tissue at a repository of the NIH NeuroBioBank. Biopreserv Biobanking 16(2):148–157.  https://doi.org/10.1089/bio.2017.0099 CrossRefGoogle Scholar
  62. 62.
    Mizuno T, Nagamura H, Iwamoto KS, Ito T, Fukuhara T, Tokunaga M, Tokuoka S, Mabuchi K, Seyama T (1998) RNA from decades-old archival tissue blocks for retrospective studies. Diagn Mol Pathol : the American journal of surgical pathology, part B 7(4):202–208CrossRefGoogle Scholar
  63. 63.
    Sobue S, Sakata K, Sekijima Y, Qiao S, Murate T, Ichihara M (2016) Characterization of gene expression profiling of mouse tissues obtained during the postmortem interval. Exp Mol Pathol 100(3):482–492.  https://doi.org/10.1016/j.yexmp.2016.05.007 CrossRefPubMedGoogle Scholar
  64. 64.
    von Ahlfen S, Missel A, Bendrat K, Schlumpberger M (2007) Determinants of RNA quality from FFPE samples. PLoS One 2(12):e1261.  https://doi.org/10.1371/journal.pone.0001261 CrossRefGoogle Scholar
  65. 65.
    Groelz D, Viertler C, Pabst D, Dettmann N, Zatloukal K (2018) Impact of storage conditions on the quality of nucleic acids in paraffin embedded tissues. PLoS One 13(9):e0203608.  https://doi.org/10.1371/journal.pone.0203608 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Viertler C, Groelz D, Gundisch S, Kashofer K, Reischauer B, Riegman PH, Winther R, Wyrich R, Becker KF, Oelmuller U, Zatloukal K (2012) A new technology for stabilization of biomolecules in tissues for combined histological and molecular analyses. J Mol Diagn : JMD 14(5):458–466.  https://doi.org/10.1016/j.jmoldx.2012.05.002 CrossRefPubMedGoogle Scholar
  67. 67.
    Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45.  https://doi.org/10.1093/nar/gkp045 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Suslov O, Steindler DA (2005) PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res 33(20):e181.  https://doi.org/10.1093/nar/gni176 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Peskoe SB, Barber JR, Zheng Q, Meeker AK, De Marzo AM, Platz EA, Lupold SE (2017) Differential long-term stability of microRNAs and RNU6B snRNA in 12-20 year old archived formalin-fixed paraffin-embedded specimens. BMC Cancer 17(1):32.  https://doi.org/10.1186/s12885-016-3008-4 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Taki FA, Abdel-Rahman AA, Zhang B (2014) A comprehensive approach to identify reliable reference gene candidates to investigate the link between alcoholism and endocrinology in Sprague-Dawley rats. PLoS One 9(5):e94311.  https://doi.org/10.1371/journal.pone.0094311 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Green TM, de Stricker K, Moller MB (2009) Validation of putative reference genes for normalization of Q-RT-PCR data from paraffin-embedded lymphoid tissue. Diagn Mol Pathol : the American journal of surgical pathology, part B 18(4):243–249.  https://doi.org/10.1097/PDM.0b013e3181a06f42 CrossRefGoogle Scholar
  72. 72.
    Dahl M, Daugaard I, Andersen MS, Hansen TB, Gronbaek K, Kjems J, Kristensen LS (2018) Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab Inv; a journal of technical methods and pathology 98(12):1657–1669.  https://doi.org/10.1038/s41374-018-0108-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
  2. 2.Shanghai Key Laboratory of Forensic MedicineAcademy of Forensic ScienceShanghaiChina
  3. 3.School of basic medical sciencesShanghai University of Medicine & Health ScienceShanghaiChina

Personalised recommendations