Feasibility of an accelerated PVAL method for the collection of GSR and biological traces

  • Constantin LuxEmail author
  • Lucy Taube
  • Marcel A. Verhoff
  • Sonja Kurscheid
  • Gabriele Zöller-Huse
  • Stephan Welkerling
  • Rüdiger Schumacher
  • Dieter Neimke
  • Mattias Kettner
Original Article


The polyvinyl alcohol method (PVAL) is known as an effective technique to thoroughly collect traces of gunshot residue (GSR) from different surfaces, e.g., from hands or gunshot wounds. Despite obvious advantages over other methods using adhesive tapes, PVAL is still not widely accepted and applied in routine case work due to a required acquisition time of at least 15 to 20 min for a single shooting hand. In this study, the feasibility of a modified procedure taking 6 to 8 min per sample is tested within the frame of an experimental setting including (1) the collection of GSR from experimental gunshots with a semi-automatic pistol and lead-containing primer ammunition and (2) a simple experimental setting involving dry and moist artificial blood traces. In a third step, samples of four gun-associated suicide cases and one attempted suicide case were taken and analyzed. Furthermore, an exemplary implementation into a work flow of modern instrumental techniques of GSR analysis is presented.


Polyvinyl alcohol method PVAL GSR Gunshot residues 


Supplementary material

414_2019_2166_Fig7_ESM.png (31 kb)

(PNG 30 kb)

414_2019_2166_MOESM1_ESM.tif (3 mb)
High Resolution Image (TIF 3029 kb)


  1. 1.
    Dalby O, Butler D, Birkett JW (2010) Analysis of gunshot residue and associated materials – a review. J Forensic Sci 55:924–943. CrossRefPubMedGoogle Scholar
  2. 2.
    Romolo FS, Margot R (2001) Identification of gunshot residue: a critical review. Forensic Sci Int 119:195–211. CrossRefGoogle Scholar
  3. 3.
    Maitre M, Kirkbride KP, Horder M, Roux C, Beavis A (2017) Current perspectives in the interpretation of gunshot residues in forensic science: a review. Forensic Sci Int 270:1–11. CrossRefPubMedGoogle Scholar
  4. 4.
    Fojtášek L, Vacínová J, Kolář P, Kotrlý M (2003) Distribution of GSR particles in the surroundings of shooting pistol. Forensic Sci Int 132:99–105. CrossRefGoogle Scholar
  5. 5.
    Brożek-Mucha Z (2011) Variation of the chemical contents and morphology of gunshot residue in the surroundings of the shooting pistol as a potential contribution to a shooting incidence reconstruction. Forensic Sci Int 210:31–41. CrossRefPubMedGoogle Scholar
  6. 6.
    Ditrich H (2012) Distribution of gunshot residues – the influence of weapon type. Forensic Sci Int 220:85–90. CrossRefPubMedGoogle Scholar
  7. 7.
    Brożek-Mucha Z (2009) Distribution and properties of gunshot residue originating from a Luger 9 mm ammunition in the vicinity of the shooting gun. Forensic Sci Int 183:33–44. CrossRefPubMedGoogle Scholar
  8. 8.
    Schyma C, Madea B, Courts C (2013) Persistence of biological traces in gun barrels after fatal contact shots. For Sci Int Genet 7:22–27. CrossRefGoogle Scholar
  9. 9.
    Schyma C, Bauer K, Brünig J, Courts C, Madea B (2017) Staining in firearm barrels after experimental contact shots. Forensic Sci Int 273:64–70. CrossRefPubMedGoogle Scholar
  10. 10.
    Lux C, Schyma C, Madea B, Courts C (2014) Identification of gunshots to the head by detection of RNA in backspatter primarily expressed in brain tissue. Forensic Sci Int 237:62–69. CrossRefPubMedGoogle Scholar
  11. 11.
    Taylor MC, Laber TL, Epstein BP, Zamzow DS, Baldwin DP (2011) The effect of firearm muzzle gases on the backspatter of blood. Int J Legal Med 125:617–628. CrossRefPubMedGoogle Scholar
  12. 12.
    Grabmüller M, Courts C, Madea B, Eichhorst T, Schyma C (2018) RNA/DNA co-analysis from bloodstains on aged polyvinyl-alcohol gloves prepared for securing evidence from the hands of victims of fatal gunshot injuries. Int J Legal Med 132:53–66. CrossRefPubMedGoogle Scholar
  13. 13.
    Ståhling S, Karlsson T (2000) A method for collection of gunshot residues from skin and other surfaces. J Forensic Sci 45:1299–1302. CrossRefPubMedGoogle Scholar
  14. 14.
    Steffen S, Niewöhner L (2003) Improved methods for the collection of gunshot residues (GSR) and for chemographic testing of lead-free Sintox™ ammunition. AFTE J 35:152–156Google Scholar
  15. 15.
    Merkel J, Mailänder R (1993) Über ein neues Verfahren zur Sicherung von Schmauchspuren an Schußhänden. Arch Kriminol 191:139–150Google Scholar
  16. 16.
    Niewöhner L, Wenz W, Merkel J (1993) New methods for gunshot distance and shooters hand determination. Adv For Sci 3:146–149Google Scholar
  17. 17.
    Schyma C, Placidi P (2000) The accelerated polyvinyl-alcohol method for GSR collection-PVAL 2.0. J Forensic Sci 45:1303–1306CrossRefGoogle Scholar
  18. 18.
    Schumacher R (2015) An improved PVAL method: the use of commercially available polyvinyl-alcohol films for securing GSR evidence. Poster Presentation ENFSI Expert Working Group Firearms/GSR Annual Meeting 2015, LimassolGoogle Scholar
  19. 19.
    Latzel S, Neimke D, Schumacher R, Barth M, Niewöhner L (2012) Shooting distance determination by m-XRF—examples on spectra interpretation and range estimation. Forensic Sci Int 223:273–227CrossRefGoogle Scholar
  20. 20.
    Sellier K (1977) Schusswaffen und Schusswirkungen II. Lübeck, Germany, pp 259–265Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Constantin Lux
    • 1
    Email author
  • Lucy Taube
    • 1
  • Marcel A. Verhoff
    • 1
  • Sonja Kurscheid
    • 2
  • Gabriele Zöller-Huse
    • 2
  • Stephan Welkerling
    • 2
  • Rüdiger Schumacher
    • 3
  • Dieter Neimke
    • 3
  • Mattias Kettner
    • 1
  1. 1.Institute of Forensic MedicineGoethe University Medical SchoolFrankfurt/MainGermany
  2. 2.Hessisches LandeskriminalamtWiesbadenGermany
  3. 3.BundeskriminalamtWiesbadenGermany

Personalised recommendations