International Journal of Legal Medicine

, Volume 133, Issue 4, pp 1065–1073 | Cite as

Rapid identification of Gloriosa superba and Colchicum autumnale by melting curve analysis: application to a suicide case involving massive ingestion of G. superba

  • Makoto SakuradaEmail author
  • Naoki Yoshioka
  • Azumi Kuse
  • Kanako Nakagawa
  • Mai Morichika
  • Motonori Takahashi
  • Takeshi Kondo
  • Migiwa Asano
  • Yasuhiro Ueno
Original Article


The plant species Gloriosa superba and Colchicum autumnale produce extremely poisonous colchicine as a major toxic metabolite. Almost all previous studies on colchicine poisoning have focused on drug analysis and clinical and pathological aspects. In this study, we developed a rapid, highly sensitive method to identify G. superba and C. autumnale. This method, which can distinguish between G. superba and C. autumnale using even minute amounts of plant material, is based on duplex real-time PCR in combination with melting curve analysis. To discriminate between the two genera of colchicine-containing plants, we designed new primer pairs targeting the region of the ycf15 gene, which is present in C. autumnale but not G. superba. By producing PCR amplicons with easily distinguishable melting temperatures, we were able to rapidly and accurately distinguish G. superba from C. autumnale. The new primer pairs generated no PCR amplicons from commercially available human DNA or various plant DNAs except for G. superba and C. autumnale. Sensitivity testing indicated that this assay can accurately detect less than 0.031 ng of DNA. Using our method in conjunction with colchicine drug analysis, we successfully identified G. superba in the stomach contents of a suicide victim who ingested massive quantities of a colchicine-containing plant. According to these results, duplex real-time PCR analysis is very appropriate for testing forensic samples, such as stomach contents harboring a variety of vegetables, and enables discrimination between G. superba and C. autumnale in forensic and emergency medical fields.


Real-time PCR Melting curve analysis Colchicine Gloriosa superba Colchicum autumnale Forensic analysis of stomach contents 



We thank Edanz Group ( for editing the English text of a draft of this manuscript.

Compliance with ethical standards

Informed consent was obtained, and autopsy sample collection was conducted with the permission of the Ethics Committee of the Kobe University Graduate School of Medicine (#1799).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

414_2019_2060_MOESM1_ESM.docx (243 kb)
ESM 1 (DOCX 242 kb)


  1. 1.
    Beyer J, Drummer OH, Maurer HH (2009) Analysis of toxic alkaloids in body samples. Forensic Sci Int 185:1–9. CrossRefGoogle Scholar
  2. 2.
    Mezzasalma V, Ganopoulos I, Galimberti A, Cornara L, Ferri E, Labra M (2017) Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification. Int J Legal Med 131:1–19. CrossRefGoogle Scholar
  3. 3.
    Ono T, Hayashida M, Uekusa K, Lai CF, Hayakawa H, Nihira M, Ohno Y (2009) An accidental case of aconite poisoning due to Kampo herbal medicine ingestion. Leg Med (Tokyo) 11:132–135. CrossRefGoogle Scholar
  4. 4.
    Schep LJ, Slaughter RJ, Beasley DM (2009) Nicotinic plant poisoning. Clin Toxicol (Phila) 47:771–781. CrossRefGoogle Scholar
  5. 5.
    Jain R, Sharma A, Gupta S, Sarethy IP, Gabrani R (2011) Solanum nigrum: current perspectives on therapeutic properties. Altern Med Rev 16:78–85Google Scholar
  6. 6.
    Gilotta I, Brvar M (2010) Accidental poisoning with Veratrum album mistaken for wild garlic (Allium ursinum). Clin Toxicol (Phila) 48:949–952. CrossRefGoogle Scholar
  7. 7.
    Alexandre J, Foucault A, Coutance G, Scanu P, Milliez P (2012) Digitalis intoxication induced by an acute accidental poisoning by lily of the valley. Circulation 125:1053–1055. CrossRefGoogle Scholar
  8. 8.
    Berdai MA, Labib S, Chetouani K, Harandou M (2012) Atropa belladonna intoxication: a case report. Pan Afr Med J 11:72Google Scholar
  9. 9.
    Angelidis C, Kotsialou Z, Kossyvakis C, Vrettou AR, Zacharoulis A, Kolokathis F, Kekeris V, Giannopoulos G (2018) Colchicine pharmacokinetics and mechanism of action. Curr Pharm Des 24:659–663. CrossRefGoogle Scholar
  10. 10.
    Dalbeth N, Lauterio TJ, Wolfe HR (2014) Mechanism of action of colchicine in the treatment of gout. Clin Ther 36:1465–1479. CrossRefGoogle Scholar
  11. 11.
    Arslan MN, Ozgun A, Das T, Kumru D, Sam B, Koc S (2016) Colchicine-induced rhabdomyolysis: an autopsy case. Am J Forensic Med Pathol 37:57–59. CrossRefGoogle Scholar
  12. 12.
    Lee YM, Kaplan MM (2003) Efficacy of colchicine in patients with primary biliary cirrhosis poorly responsive to ursodiol and methotrexate. Am J Gastroenterol 98:205–208. CrossRefGoogle Scholar
  13. 13.
    Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S (2015) Colchicine: old and new. Am J Med 128:461–470. CrossRefGoogle Scholar
  14. 14.
    Sannohe S, Makino Y, Kita T, Kuroda N, Shinozuka T (2002) Colchicine poisoning resulting from accidental ingestion of meadow saffron (Colchicum autumnale). J Forensic Sci 47:1391–1396CrossRefGoogle Scholar
  15. 15.
    Sundov Z, Nincevic Z, Definis-Gojanovic M, Glavina-Durdov M, Jukic I, Hulina N, Tonkic A (2005) Fatal colchicine poisoning by accidental ingestion of meadow saffron-case report. Forensic Sci Int 149:253–256. CrossRefGoogle Scholar
  16. 16.
    Wollersen H, Erdmann F, Risse M, Dettmeyer R (2009) Accidental fatal ingestion of colchicine-containing leaves--toxicological and histological findings. Leg Med (Tokyo) 11 Suppl 1:S498–S499. CrossRefGoogle Scholar
  17. 17.
    Babu YP, Manjunath S, Bakkannavar SM, Acharya J, Kumar GN (2012) Colchicine poisoning: a case report and review of literature. Med Sci Law 52:205–206. CrossRefGoogle Scholar
  18. 18.
    Deveaux M, Hubert N, Demarly C (2004) Colchicine poisoning: case report of two suicides. Forensic Sci Int 143:219–222. CrossRefGoogle Scholar
  19. 19.
    Kande Vidanalage CJ, Ekanayeka R, Wijewardane DK (2016) Case report: a rare case of attempted homicide with Gloriosa superba seeds. BMC Pharmacol Toxicol 17:26. CrossRefGoogle Scholar
  20. 20.
    Plant toxicological information: the Japanese Ministry of Health, Labor and Welfare. Accessed 4 Nov 2018
  21. 21.
    Klintschar M, Beham-Schmidt C, Radner H, Henning G, Roll P (1999) Colchicine poisoning by accidental ingestion of meadow saffron (Colchicum autumnale): pathological and medicolegal aspects. Forensic Sci Int 106:191–200CrossRefGoogle Scholar
  22. 22.
    Byard RW, Stockham PC, Gilbert JD (2005) Vomiting, diarrhea, and sudden death with recent southeast Asian travel: fatal colchicine toxicity. Forensic Sci Med Pathol 1:149–152. CrossRefGoogle Scholar
  23. 23.
    Lauer E, Widmer C, Versace F, Staub C, Mangin P, Sabatasso S, Augsburger M, Déglon J (2013) Body fluid and tissue analysis using filter paper sampling support prior to LC-MS/MS: application to fatal overdose with colchicine. Drug Test Anal 5:763–772. CrossRefGoogle Scholar
  24. 24.
    Aghabiklooei A, Zamani N, Hassanian-Moghaddam H, Nasouhi S, Mashayekhian M (2014) Acute colchicine overdose: report of three cases. Reumatismo 65:307–311. CrossRefGoogle Scholar
  25. 25.
    Sucher NJ, Hennell JR, Carles MC (2012) DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants. Methods Mol Biol 862:13–22. CrossRefGoogle Scholar
  26. 26.
    Houston R, Birck M, Hughes-Stamm S, Gangitano D (2016) Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification. Int J Legal Med 130:635–647. CrossRefGoogle Scholar
  27. 27.
    Matsuyama S, Nishi K (2011) Genus identification of toxic plant by real-time PCR. Int J Legal Med 125:211–217. CrossRefGoogle Scholar
  28. 28.
    Nguyen PA, Kim JS, Kim JH (2015) The complete chloroplast genome of colchicine plants (Colchicum autumnale L. and Gloriosa superba L.) and its application for identifying the genus. Planta 242:223–237. CrossRefGoogle Scholar
  29. 29.
    Ishida N, Sakurada M, Kusunoki H, Ueno Y (2018) Development of a simultaneous identification method for 13 animal species using two multiplex real-time PCR assays and melting curve analysis. Leg Med (Tokyo) 30:64–71. CrossRefGoogle Scholar
  30. 30.
    Tsuruda S, Akaki K, Hiwaki H, Suzuki A, Akiyama H (2012) Multiplex real-time PCR assay for simultaneous detection of Omphalotus guepiniformis and Lentinula edodes. Biosci Biotechnol Biochem 76:1343–1349. CrossRefGoogle Scholar
  31. 31.
    Grube S, Schonling J, Prange A (2015) Evaluation of a triplex real-time PCR system to detect the plant-pathogenic molds Alternaria spp., Fusarium spp. and C. purpurea. J Microbiol Methods 119:180–188. CrossRefGoogle Scholar
  32. 32.
    Yamanoi E, Uchiyama S, Sakurada M, Ueno Y (2018) sjTREC quantification using SYBR quantitative PCR for age estimation of bloodstains in a Japanese population. Leg Med (Tokyo) 32:71–74. CrossRefGoogle Scholar
  33. 33.
    Walid Turk SO (2015) Determination of colchicine contents in different Jordanian colchicum spp. Jordan J Pharm Sci 8:119–122CrossRefGoogle Scholar
  34. 34.
    Maroyi A (2012) Phylogenetic relationships in genus Gloriosa L. Afr J Biotechnol 11:14732–14737. Google Scholar
  35. 35.
    Okuda K, Maseda C, Asari M, Yamada H, Ohtani S, Ogawa K, Adachi Y, Kiya H, Yokota J, Saito M, Shimizu K (2015) An autopsy case of colchicine poisoning by Colchicine autumnale. Res Pract Forens Med 58:13–20Google Scholar
  36. 36.
    Ferner RE, Aronson JK (2018) The toxicological significance of post-mortem drug concentrations in bile. Clin Toxicol (Phila) 56:7–14. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Legal MedicineKobe University Graduate School of MedicineKobeJapan
  2. 2.Forensic Science LaboratoryHyogo Prefectural Police HeadquartersKobeJapan
  3. 3.Hyogo Prefectural Institute of Public Health ScienceKakogawaJapan
  4. 4.Division of Legal MedicineEhime University Graduate School of MedicineToonJapan

Personalised recommendations