Advertisement

A novel method for post-mortem interval estimation based on tissue nano-mechanics

  • Fabio De-Giorgio
  • Matteo Nardini
  • Federica Foti
  • Eleonora Minelli
  • Massimiliano Papi
  • Ernesto d’Aloja
  • Vincenzo L. PascaliEmail author
  • Marco De SpiritoEmail author
  • Gabriele Ciasca
Short Communication

Abstract

Forensic estimation of post-mortem interval relies on different methods, most of which, however, have practical limitations or provide insufficient results, still lacking a gold standard method. In order to better understand the phenomenon of rigor mortis and its applicability to the post-mortem interval estimation, we decided to use atomic force microscopy, a tool often employed to measure mechanical properties of adherent cells. Thus, we surgically removed skeletal muscle samples of three forensic cases from 0 to 120 h post-mortem and quantitatively evaluate two parameters: the Young’s modulus (E), which gives information about the sample stiffness, and the hysteresis (H), which estimates the contribution of viscous forces. Despite being a preliminary study, the obtained results show that the temporal behavior of E well correlates with the expected evolution of rigor mortis between 0 and 48 h post-mortem, and then monotonically decreases over time. Unfortunately, it is strongly affected by inter-individual variability. However, we found that H provides measurable data along a time-dependent curve back to the starting point, and these data measured on different subjects collapse onto a single master curve, getting rid of the inter-individual variability. Although a larger sampling should be performed to improve the result reliability, this finding is strongly suggestive that the evaluation of rigor mortis should involve the measure of the nanoscale dissipative behavior of muscular tissues.

Keywords

Time since death Rigor mortis Atomic force microscope Nano-mechanics 

Abbreviations

PMI

Post-mortem interval

AFM

Atomic force microscope

hpm

Hours post-mortem

Notes

Supplementary material

414_2019_2034_MOESM1_ESM.jpg (87 kb)
Figure S1 Correlation plots between E and H for the three subjects with the corresponding Pearson’s correlation coefficients. A linear trend was fitted to data (black continuous line) and a set of three different slopes (m) and intercepts (q) were obtained, namely m = (−3,4 ± 0,9) 102 kPa, q = (1,9 ± 0,4) 102 kPa (subject 1), m = (−3,6 ± 1,2) 104 kPa, q = (2,0 ± 0,6) 104 kPa (subject 2) and m = (−1,1 ± 0,1) 105 kPa, q = (5,6 ± 0,6) 104 kPa (subject 3). (JPG 86 kb)

References

  1. 1.
    Madea B (2016) Methods for determining time of death. Forensic Sci Med Pathol 12:451–485CrossRefGoogle Scholar
  2. 2.
    Pirch J, Schulz Y, Klintschar M (2013) A case of instantaneous rigor? Int J Legal Med 127:971–974CrossRefGoogle Scholar
  3. 3.
    Krompecher T, Bergerioux C, Brandt-Casadevall C, Gujer H-R (1983) Experimental evaluation of rigor mortis. VI. Effect of various causes of death on the evolution of rigor mortis. Forensic Sci Int 22:1–9CrossRefGoogle Scholar
  4. 4.
    Saukko P, Knight B (2015) Knight’s forensic pathology fourth edition. Edward Arnold, LondonGoogle Scholar
  5. 5.
    Krompecher T (1994) Experimental evaluation of rigor mortis. VIII. Estimation of time since death by repeated measurements of the intensity of rigor mortis on rats. Forensic Sci Int 68:149–159CrossRefGoogle Scholar
  6. 6.
    Vain A, Kauppila R, Humal L-H, Vuori E (1992) Grading rigor mortis with myotonometry - a new possibility to estimate time of death. Forensic Sci Int 56:147–150CrossRefGoogle Scholar
  7. 7.
    Martins PALS, Ferreira F, Natal Jorge R, Parente M, Santos A (2015) Necromechanics: death-induced changes in the mechanical properties of human tissues. Proc Inst Mech Eng H J Eng Med 229:343–349CrossRefGoogle Scholar
  8. 8.
    Kobayashi M, Takatori T, Nakajima M, Sakurada K, Hatanaka K, Ikegaya H, Matsuda Y, Iwase H (2000) Onset of rigor mortis is earlier in red muscle than in white muscle. Int J Legal Med 113:240–243CrossRefGoogle Scholar
  9. 9.
    Kobayashi M, Takemori S, Yamaguchi M (2004) Differential rigor development in red and white muscle revealed by simultaneous measurement of tension and stiffness. Forensic Sci Int 140:79–84CrossRefGoogle Scholar
  10. 10.
    Kobayashi M, Takatori T, Nakajima M, Saka K, Iwase H, Nagao M, Niijima H, Matsuda Y (1999) Does the sequence of onset of rigor mortis depend on the proportion of muscle fibre types and on intra-muscular glycogen content? Int J Legal Med 112:167–171CrossRefGoogle Scholar
  11. 11.
    Anders S, Kunz M, Gehl A, Sehner S, Raupach T, Beck-Bornholdt HP (2013) Estimation of the time since death - reconsidering the re-establishment of rigor mortis. Int J Legal Med 127:127–130CrossRefGoogle Scholar
  12. 12.
    Crostack C, Sehner S, Raupach T, Anders S (2017) Re-establishment of rigor mortis: evidence for a considerably longer post-mortem time span. Int J Legal Med 131:1039–1042CrossRefGoogle Scholar
  13. 13.
    Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613CrossRefGoogle Scholar
  14. 14.
    Tian M, Li Y, Liu W, Jin L, Jiang X, Wang X, Ding Z, Peng Y, Zhou J, Fan J, Cao Y, Wang W, Shi Y (2015) The nanomechanical signature of liver cancer tissues and its molecular origin. Nanoscale 7:12998–13010CrossRefGoogle Scholar
  15. 15.
    Ciasca G, Sassun TE, Minelli E, Antonelli M, Papi M, Santoro A, Giangaspero F, Delfini R, de Spirito M (2016) Nano-mechanical signature of brain tumours. Nanoscale 8:19629–19643CrossRefGoogle Scholar
  16. 16.
    Papi M, Brunelli R, Familiari G, Frassanito MC, Lamberti L, Maulucci G, Monaci M, Pappalettere C, Parasassi T, Relucenti M, Sylla L, Ursini F, de Spirito M (2012) Whole-depth change in bovine zona pellucida biomechanics after fertilization: how relevant in hindering polyspermy? PLoS One 7:e45696CrossRefGoogle Scholar
  17. 17.
    Gavara N (2017) A Beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80:75–84CrossRefGoogle Scholar
  18. 18.
    Stylianou A, Lekka L, Stylianopoulos T (2018) AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: from single cell to tissue level. Nanoscale 10.45:20930–20945Google Scholar
  19. 19.
    Dorakumbura BN, Becker T, Lewis SW (2016) Nanomechanical mapping of latent fingermarks: a preliminary investigation into the changes in surface interactions and topography over time. Forensic Sci Int 267:16–24CrossRefGoogle Scholar
  20. 20.
    Strasser S, Zink A, Kada G, Hinterdorfer P, Peschel O, Heckl WM, Nerlich AG, Thalhammer S (2007) Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci Int 170:8–14CrossRefGoogle Scholar
  21. 21.
    Van Zwieten RW, Puttini S, Lekka M et al (2014) Assessing dystrophies and other muscle diseases at the nanometer scale by atomic force microscopy. Nanomedicine 9:393–406CrossRefGoogle Scholar
  22. 22.
    Haase K, Pelling AE (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12:20140970CrossRefGoogle Scholar
  23. 23.
    Ciasca G, Papi M, Minelli E, Palmieri V, de Spirito M (2016) Changes in cellular mechanical properties during onset or progression of colorectal cancer. World J Gastroenterol 22:7203–7214CrossRefGoogle Scholar
  24. 24.
    Ciasca G, Papi M, Di Claudio S et al (2015) Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level. Nanoscale 7:17030–17037CrossRefGoogle Scholar
  25. 25.
    Minelli E, Ciasca G, Sassun TE, Antonelli M, Palmieri V, Papi M, Maulucci G, Santoro A, Giangaspero F, Delfini R, Campi G, de Spirito M (2017) A fully-automated neural network analysis of AFM force-distance curves for cancer tissue diagnosis. Appl Phys Lett 111:143701CrossRefGoogle Scholar
  26. 26.
    Minelli E, Sassun TE, Papi M, Palmieri V, Palermo F, Perini G, Antonelli M, Gianno F, Maulucci G, Ciasca G, de Spirito M (2018) Nanoscale mechanics of brain abscess: an atomic force microscopy study. Micron 113:34–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabio De-Giorgio
    • 1
  • Matteo Nardini
    • 2
  • Federica Foti
    • 1
  • Eleonora Minelli
    • 2
  • Massimiliano Papi
    • 2
  • Ernesto d’Aloja
    • 3
  • Vincenzo L. Pascali
    • 1
    Email author
  • Marco De Spirito
    • 2
    Email author
  • Gabriele Ciasca
    • 2
  1. 1.Institute of Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
  2. 2.Institute of Physics, Fondazione Policlinico Universitario A. Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
  3. 3.Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly

Personalised recommendations