Advertisement

International Journal of Legal Medicine

, Volume 133, Issue 3, pp 909–920 | Cite as

Application of the recent SanMillán–Rissech acetabular adult aging method in a North American sample

  • Marta San-MillánEmail author
  • Carme Rissech
  • Daniel Turbón
Original Article

Abstract

Recently, a renewed acetabular aging methodology was published by San-Millán et al. (Int J Leg Medicine, 47, 131: 501–525), refining the variables associated with acetabular fossa aging in different populations. Due to its novelty, this method has not yet been examined in any other population, other than it was developed and originally tested on. Therefore, the main goals of this study are two-fold: (1) to evaluate the accuracy of SanMillán–Rissech’s method in a North American sample made up of 826 white (456 males and 370 females) individuals from the Bass Collection and (2) to determine whether the revised methodology shows higher rates of accuracy than the original methodology (J Forensic Sci, 31, 51(2): 213–229). Scores obtained by both methodologies were analyzed via a Bayesian statistical program (IDADE2) that estimates a relative likelihood distribution for the target individuals, produces age-at-death estimates, and provides 95% confidence intervals. Even though the revised method was developed using a Western European collection, the results demonstrate that it is also applicable to North American samples with reasonable accuracy results, i.e., an average absolute error of 7.19 years in males and 9.65 years in females. However, accuracy in females is significantly lower than in males, likely due to their higher morphological variability associated with different factors other than age. The significantly better performance of the revised methodology compared with the original is also been confirmed by the current findings from this North American sample, supporting the renewed system as a better aging methodology. Although work on further populations is needed, previously and current results should encourage professionals to include the acetabular method in forensic and archaeological laboratories routines.

Keywords

Acetabulum Aging Age-at-death estimation North American population Accuracy 

Notes

Acknowledgments

We are grateful to Emma Bonthorne, Sheryl Spigelski, and Kyra Stull for her helpful comments and Professor Dawnie Steadman, PhD Jieun Kim, and their team for allowing us access to the collection used for this investigation. This study was partially funded with a stay scholarship additional to FPU grant (AP2010-0595) from the Ministerio de Educación of Spain to Marta San-Millán.

References

  1. 1.
    McKern TW, Stewart TD (1957) Skeletal age changes in young American Males. Quartermaster Research and Development Command Technical Report EP45, Natick, MassachusettsGoogle Scholar
  2. 2.
    Miles AEW (1963) Dentition in the estimating of age. J Dent Res 42:255–263CrossRefGoogle Scholar
  3. 3.
    Szilvassy J (1978) Eine Methode zur Altersbestimmung mit Hilfe der sternalen Gelenkflächen der Schlüsselbeine. Mitteilungen der Anthropologischen Gesellschaft Wien 108:166–168Google Scholar
  4. 4.
    Vlcek E (1980) Estimation of age from skeleton material based on the degree of thyreoid cartilage ossification. Sound Lek 25:6–11Google Scholar
  5. 5.
    Brothwell DR (1989) The relationship of tooth wear to aging. In: Işcan MY (ed) Age makers in human skeleton. Charles C Thomas Publishers, Springfield, pp 303–318Google Scholar
  6. 6.
    Işcan MY, Loth SR, Wright RK (1984) Metamorphosis at the sternal rib end: a new method to estimate age at death in white males. Am J Phys Anthropol 65(2):147–156CrossRefGoogle Scholar
  7. 7.
    Meindl RS, Lovejoy CO (1985) Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am J Phys Anthropol 68(1):57–66CrossRefGoogle Scholar
  8. 8.
    Mann RW, Symes SA, Bass WM (1987) Maxillary suture obliteration: ageing the human skeleton based on intact or fragmentary maxilla. J Forensic Sci 32:148–157PubMedGoogle Scholar
  9. 9.
    Loth SR, Işcan MY (1989) Morphological assessment of age in the adult: the thoracic region. In: Işcan MY (ed) Age markers in the human skeleton. Charles C Thomas Publishers, Springfield, pp 105–135Google Scholar
  10. 10.
    Lamendin H, Baccino E, Humbert JF, Tavernier JC, Nossintchouk RM, Zerilli A (1992) A simple technique for age estimation in adult corpes: the two criteria dental method. J Forensic Sci 37:1373–1379CrossRefGoogle Scholar
  11. 11.
    Albert AM, Maples WR (1995) Stages of epiphyseal union for thoracic and lumbar vertebral center as a method of age determination for teenage and young adult skeletons. J Forensic Sci 40:623–633CrossRefGoogle Scholar
  12. 12.
    Kunos CA, Simpson SW, Russell KF, Hershkovitz I (1999) First rib metamorphosis: its possible utility for human age-at-death estimation. Am J Phys Anthropol 110(3):303–323CrossRefGoogle Scholar
  13. 13.
    DiGangi EA, Bethard JD, Kimmerle EH, Konigsberg LW (2009) A new method for estimating age-at-death from the first rib. Am J Phys Anthropol 138(2):164–176CrossRefGoogle Scholar
  14. 14.
    Todd TW (1920) Age changes in the pubic bone: the white male pubis. Am J Phys Anthropol 3:427–470CrossRefGoogle Scholar
  15. 15.
    Todd TW (1921) Age changes in the pubic bone. Am J Phys Anthropol 4(1):1–70CrossRefGoogle Scholar
  16. 16.
    Gilbert BM, McKern TW (1973) A method of aging the female os pubis. Am J Phys Anthropol 38:31–38CrossRefGoogle Scholar
  17. 17.
    Krogman WM, Işcan MY (1986) The human skeleton in forensic medicine. Charles C Thomas Publishers, SpringfieldGoogle Scholar
  18. 18.
    Meindl RS, Lovejoy CO, Mensforth RP, Walker RA (1985) A revised method of age determination using the os pubis, with a review and tests of accuracy of other current methods of pubic symphyseal aging. Am J Phys Anthropol 68(1):29–45CrossRefGoogle Scholar
  19. 19.
    Katz D, Suchey JM (1986) Age determination of the male os pubis. Am J Phys Anthropol 69:427–435CrossRefGoogle Scholar
  20. 20.
    Brooks ST, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of Acsádi-Nemeskéri and Suchey-Brooks methods. Human Evol 5:227–238CrossRefGoogle Scholar
  21. 21.
    Dudzik B, Langley NR (2015) Estimating age from the pubic symphysis: a new component-based system. Forensic Sci Int 257:98–105CrossRefGoogle Scholar
  22. 22.
    Slice DE, Algee-Hewitt BF (2015) Modeling bone surface morphology: a fully quantitative method for age-at-death estimation using the pubic symphysis. J Forensic Sci 60(4):835–843CrossRefGoogle Scholar
  23. 23.
    Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP (1985) Chronological metamorphosis of the auricular surface of the ilium. A new method for the determination of adult skeletal age at death. Am J Phys Anthropol 68(1):15–28CrossRefGoogle Scholar
  24. 24.
    Schwartz JH (1995) Skeleton keys. An introduction to human skeletal morphology, development, and analysis. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Byers SN (2001) Introduction in forensic anthropology. In: A textbook. Taylor & Francis, BostonGoogle Scholar
  26. 26.
    Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119(3):231–239CrossRefGoogle Scholar
  27. 27.
    Osborne DL, Simmons TL, Nawrocki SP (2004) Reconsidering the auricular surface as an indicator of age at death. J Forensic Sci 49(5):JFS2003348–JFS2003347CrossRefGoogle Scholar
  28. 28.
    Rissech C (2001) Anàlisis del creixement del coxal a partir de material ossi i les seves aplicacions en la Medicina Forense i l’Antropologia. PhD dissertation, Universitat Autònoma de BarcelonaGoogle Scholar
  29. 29.
    Rissech C, Sañudo JR, Malgosa A (2001) The acetabular point: a morphological and ontogenetic study. J Anat 198(6):743–748CrossRefGoogle Scholar
  30. 30.
    Rougé-Maillart C, Telmon N, Rissech C, Malgosa A, Rougé D (2004) The determination of male adult age at death by central and posterior coxal analysis. A preliminary study. J Forensic Sci 49:1–7CrossRefGoogle Scholar
  31. 31.
    Rissech C, Estabrook GF, Cunha E, Malgosa A (2006) Using the acetabulum to estimate age at death of adult males. J Forensic Sci 51(2):213–229CrossRefGoogle Scholar
  32. 32.
    Rissech C, Estabrook GF, Cunha E, Malgosa A (2007) Estimation of age-at-death for adult males using the acetabulum, applied to four Western European populations. J Forensic Sci 52(4):774–778CrossRefGoogle Scholar
  33. 33.
    Rougé-Maillart C, Jousset N, Viella B, Gaudin A, Telmon N (2007) Contribution of the study of the acetabulum for the estimation of adult subjects. Forensic Sci Int 171:103–110CrossRefGoogle Scholar
  34. 34.
    Powanda A (2008) A comparison of pelvic age-estimation methods on two modern Iberian populations: bioarchaeological and forensic implications. Master’s dissertation, New York UniversityGoogle Scholar
  35. 35.
    Stull KE, James DM (2010) Determination of age at death using the acetabulum of the os coxa. In: Latham KE, Finnegan M (eds) Age estimation of the human skeleton. Charles C Thomas Publishers, Springfield, pp 134–146Google Scholar
  36. 36.
    Calce ES, Rogers TL (2011) Evaluation of age estimation technique: testing traits of the acetabulum to estimate age at death in adult males. J Forensic Sci 56:302–311CrossRefGoogle Scholar
  37. 37.
    Mays S (2012) An investigation of age-related changes at the acetabulum in 18th–19th century AD adult skeletons from Christ Church Spitalfields, London. Am J Phys Anthropol 149:485–492CrossRefGoogle Scholar
  38. 38.
    Mays S (2014) A test of a recently devised method of estimating skeletal age at death using features of the adult acetabulum. J Forensic Sci 59(1):184–187CrossRefGoogle Scholar
  39. 39.
    Miranker M (2016) A comparison of different age estimation methods of the adult pelvis. J Forensic Sci 61(5):1173–1179CrossRefGoogle Scholar
  40. 40.
    Calce SE, Kurki HK, Weston DA, Gould L (2018) Effects of osteoarthritis on age-at-death estimates from the human pelvis. Am J Phys Anthropol 132:289–300.  https://doi.org/10.1007/s00414-017-1604-8 CrossRefGoogle Scholar
  41. 41.
    Powanda A (2017) Validation of the acetabulum as a skeletal indicator of age at death in modern European-Americans. J Forensic Sci.  https://doi.org/10.1111/1556-4029.13972
  42. 42.
    San-Millán M, Rissech C, Turbón D (2017a) Shape variability of the adult human acetabulum and acetabular fossa related to sex and age by geometric morphometrics. Implications for adult age estimation. Forensic Sci Int 272:50–63CrossRefGoogle Scholar
  43. 43.
    Navega D, Godinho M, Cunha E, Ferreira MT (2018) A test and analysis of Calce (2012) method for skeletal age-at-death estimation using the acetabulum in a modern skeletal sample. Int J Legal Med 132:1447–1455.  https://doi.org/10.1007/s00414-018-1902-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Rissech C, Appleby J, Cosso A, Reina F, Carrera A, Thomas R (2018) The influence of bone loss on the three adult age markers of the innominate. Int J Legal Med 132(1):289–300CrossRefGoogle Scholar
  45. 45.
    Rougé-Maillart C, Vielle B, Jousset N, Chappard D, Telmon N, Cunha E (2009) Development of a method to estimate skeletal age at death in adults using the acetabulum and the auricular surface on a Portuguese population. Forensic Sci Int 188(1–3):91–95CrossRefGoogle Scholar
  46. 46.
    Calce ES (2012) A new method to estimate adult age-at-death using the acetabulum. Am J Phys Anthropol 148:11–23CrossRefGoogle Scholar
  47. 47.
    San-Millán M, Rissech C, Turbón D (2017b) New approach to age estimation of male and female adult skeletons based on the morphological characteristics of the acetabulum. Int J Legal Med 131(2):501–525CrossRefGoogle Scholar
  48. 48.
    Cardoso HF (2006) Brief communication: the collection of identified human skeletons housed at the Bocage Museum (National Museum of Natural History), Lisbon, Portugal. Am J Phys Anthropol 129(2):173–176CrossRefGoogle Scholar
  49. 49.
    Jantz LM, Jantz R (2008) The anthropology research facility: the outdoor Laboratory of the Forensic Anthropology Center, University of Tennessee. In: Warren MW, Walsh-Haney HA, Frease LE (eds) The forensic anthropology laboratory. CRC Press, New York, pp 7–21CrossRefGoogle Scholar
  50. 50.
    Cunha E (1996) Osteoarthritis as an indicator of demographic structure of past populations: the example of a Portuguese medieval sample. In: Pérez-Pérez A (ed) Salud, enfermedad y muerte en el pasado. Consecuencias biologicas del estrés y la patología. Fundación Uriach, Barcelona, pp 149–155Google Scholar
  51. 51.
    Schmitt A (2001) Variabilité de la sénescence du squelette humain. Réflexions sur les indicateurs de l’âge au décès: à la recherche d’un outil performant. PhD dissertation, Universite de BordeauxGoogle Scholar
  52. 52.
    San-Millán M (2015) Estudio de la variabilidad morfológica del acetábulo y los caracteres de senescencia de la región acetabular y otros marcadores de edad del hueso coxal mediante series osteológicas. Aplicaciones en antropología y medicina forense. PhD dissertation, Universitat de BarcelonaGoogle Scholar
  53. 53.
    Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70:213–220CrossRefGoogle Scholar
  54. 54.
    Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas 33:613–619CrossRefGoogle Scholar
  55. 55.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  56. 56.
    Lucy D, Aykroyd RG, Pollard AM, Solheim T (1996) A Bayesian approach to adult age estimation from dental observations by Johanson’s age changes. J Forensic Sci 41:189–194CrossRefGoogle Scholar
  57. 57.
    Falys CG, Schutkowski H, Weston DA (2006) Auricular surface aging: worse than expected? A test of the revised method on a documented historic skeletal assemblage. Am J Phys Anthropol 130:508–513CrossRefGoogle Scholar
  58. 58.
    Murray K, Murray T (1991) A test of the auricular surface aging technique. J Forensic Sci 36:1162–1169CrossRefGoogle Scholar
  59. 59.
    Martrille L, Ubelaker DH, Cattaneo C, Seguret F, Tremblay M, Baccino E (2007) Comparison of four skeletal methods for the estimation of age at death on white and black adults. J Forensic Sci 52:302–307CrossRefGoogle Scholar
  60. 60.
    Hens SM, Rastelli E, Belcastro G (2008) Age estimation from the human os coxa: a test on a documented Italian collection. J Forensic Sci 53:1040–1043CrossRefGoogle Scholar
  61. 61.
    Rissech C, Wilson J, Winburn AP, Turbón D, Steadman D (2012) A comparison of three established age estimation methods on an adult Spanish sample. Int J Legal Med 126(1):145–155CrossRefGoogle Scholar
  62. 62.
    San Millán M, Rissech C, Turbón D (2013) A test of Suchey–Brooks (pubic symphysis) and Buckberry–Chamberlain (auricular surface) methods on an identified Spanish sample: paleodemographic implications. J Archaeol Sci 40(4):1743–1751CrossRefGoogle Scholar
  63. 63.
    Schmitt A (2004) Age-at-death assessment using the os pubis and the auricular surface of the ilium: a test on an identified Asian sample. Int J Osteoarchaeol 14(1):1–6CrossRefGoogle Scholar
  64. 64.
    Djurić M, Djonić D, Nikolić S, Popović D, Marinković J (2007) Evaluation of the Suchey–Brooks method for aging skeletons in the Balkans. J Forensic Sci 52(1):21–23CrossRefGoogle Scholar
  65. 65.
    Hens SM, Belcastro MG (2012) Auricular surface aging: a blind test of the revised method on historic Italians from Sardinia. Forensic Sci Int 214(1–3):209–2e1PubMedGoogle Scholar
  66. 66.
    Mays S (2015) The effect of factors other than age upon skeletal age indicators in the adult. Ann Hum Biol 42(4):332–341CrossRefGoogle Scholar
  67. 67.
    Nawrocki SP (2010) The nature and sources of error in the estimation of age at death from the skeleton. In: Latham KE, Finnegan M (eds) Age estimation of the human skeleton. Charles C. Thomas Publishers, Springfield, pp 79–101Google Scholar
  68. 68.
    Jackes M (2000) Building the bases for palaeodemographic analysis: adulta ge determination. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Willey, Chichester, pp 417–466Google Scholar
  69. 69.
    Gamble JG, Simmons SC, Freedman M (1986) The symphysis pubis. Anatomic and pathologic consideration. Clin Orthop 203:261-272Google Scholar
  70. 70.
    Shibata Y, Shirai Y, Miyamoto M (2002) The aging process at the sacroiliac joint: helical computed tomography analysis. J Orthop Sci 7:12–18CrossRefGoogle Scholar
  71. 71.
    Wescott DJ, Drew JL (2015) Effect of obesity on the reliability of age-at-death indicators of the pelvis. Am J Phys Anthropol 156(4):595–605CrossRefGoogle Scholar
  72. 72.
    Truesdell J (2017) The effect of lifestyle factors such as smoking, activity level, and pregnancy on age estimation from the pubic symphysis: a study of 1,238 living volunteers. Am J Phys Anthropol 162:386–386Google Scholar
  73. 73.
    Mulhern DM, Jones EB (2005) Test of revised method of age estimation from the auricular surface of the ilium. Am J Phys Anthropol 126(1):61–65CrossRefGoogle Scholar
  74. 74.
    Moraitis K, Zorba E, Eliopoulos C, Fox SC (2014) A test of the revised auricular surface aging method on a modern European population. J Forensic Sci 59(1):188–194CrossRefGoogle Scholar
  75. 75.
    Garvin HM, Passalacqua NV (2012) Current practices by forensic anthropologists in adult skeletal age estimation. J Forensic Sci 57:427–433CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.EUSES University School of Health and Sports, University of GironaSaltSpain
  2. 2.Evolutionary Biology, Ecology and Environmental Sciences Department, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  3. 3.Unit of Anatomy, Department of Medical Sciences, Faculty of MedicineUniversity of Balearic IslandsPalma de MallorcaSpain

Personalised recommendations