International Journal of Legal Medicine

, Volume 133, Issue 2, pp 491–499 | Cite as

Time since death nomographs implementing the nomogram, body weight adjusted correction factors, metric and imperial measurements

  • Stefan PotenteEmail author
  • Mattias Kettner
  • Takaki Ishikawa
Original Article


The concept of nomography was developed around 1880 as a means to compute formulas graphically. Regular use has decreased over time in most fields, mainly owing to progress in electronic computation devices. In forensic pathology, nomography is still used in the so-called “nomogram method” for the estimation of time since death. It is the graphical representation of the formula by Marshall and Hoare with the parameters of Henssge. Here, two nomograms exist (for ambient temperatures below and above 23 °C, no imperial measurements). Rounding for body weight input and result reading introduces errors. In addition, correction factors, applied to body weight, allow to adapt for certain conditions on the crime scene and are essential to the method. They are not directly integrated into the nomograms but must be applied in advance. A formula, scaling correction factors for different body weights, was later added by Henssge, along with a simplified table for case work. In this publication, we present newly designed time since death nomographs as representations of Henssge’s parameters with the addition of both metric and imperial measurements, integration of weight adjusted scaling of correction factors, and a geometrically consistent framework for body weight and result reading, which eliminates some rounding steps and reduces the overall rounding-related estimation errors.


Death time Nomogram Nomograph Time since death 


Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

414_2018_1928_MOESM1_ESM.pdf (17 mb)
(PDF 17.0 MB)
414_2018_1928_MOESM2_ESM.pdf (4.7 mb)
(PDF 4.71 MB)
414_2018_1928_MOESM3_ESM.pdf (4.7 mb)
(PDF 4.74 MB)
414_2018_1928_MOESM4_ESM.pdf (4.8 mb)
(PDF 4.81 MB)
414_2018_1928_MOESM5_ESM.pdf (3.7 mb)
(PDF 3.72 MB)
414_2018_1928_MOESM6_ESM.pdf (4 mb)
(PDF 4.03 MB)


  1. 1.
    Schilling F, d’ Ocagne M (1900) Über die Nomographie von M. D’Ocagne: Eine Einführung in dieses Gebiet. B.G. TeubnerGoogle Scholar
  2. 2.
    d’ Ocagne M (1986) Le Calcul Simplifié: graphical and mechanical methods for simplifying calculation. MIT PressGoogle Scholar
  3. 3.
    Doerfler R (2009) On Jargon-The lost art of nomography. UMAP J 30(4):457Google Scholar
  4. 4.
    Garrigues D (1939) Généralisation de la formule pascale de gauss: nomogramme du calendrier perpétuel. Annales françaises de chronométrie, 47–60Google Scholar
  5. 5.
    Williams D, Walker J (2015) A nomogram for calculation of the revised Baux score. Burns 41(1):85–90. CrossRefGoogle Scholar
  6. 6.
    Kattan MW, Marasco J (2010) What is a real nomogram? Semin Oncol 37(1):23–26. CrossRefGoogle Scholar
  7. 7.
    Marasco J, Doerfler R, Roschier L (2011) Doc, what are my chances. UMAP J 32:279–298. Google Scholar
  8. 8.
    Bolling C (2016) 50 years ago in the journal of pediatrics: charts of normal body measurement and revised width-weight tables in graphic form. J Pediatr 171:219. CrossRefGoogle Scholar
  9. 9.
    Callaghan L, Walker J (2015) An aid to drug dosing safety in obese children: development of a new nomogram and comparison with existing methods for estimation of ideal body weight and lean body mass. Anaesthesia 70 (2):176–182. CrossRefGoogle Scholar
  10. 10.
    Shino N, Uchida T, Yoshida M, Nomura Y (2015) Development and assessment of a nomogram to propose the initial dosage regimen of a meropenem infusion based on serum creatinine and age using a Monte Carlo simulation. Chem Pharm Bull 63(12):986–991. CrossRefGoogle Scholar
  11. 11.
    Horio M, Orita Y, Manabe S, Sakata M, Fukunaga M (1997) Formula and nomogram for predicting creatinine clearance from serum creatinine concentration. Clin Exp Nephrol 1(2):110–114. CrossRefGoogle Scholar
  12. 12.
    Horio M (2007) Nomogram for the 4-variable modification of diet in renal disease study equation. Am J Kidney Dis 49(5):722–723. CrossRefGoogle Scholar
  13. 13.
    Henssge C, Knight B, Krompecher T, Madea B, Nokes L (2002) The estimation of the time since death in the early postmortem period. Int J Legal Med 11:6–374. Google Scholar
  14. 14.
    Henssge C (1988) Death time estimation in case work. I. The rectal temperature time of death nomogram. Forensic Sci Int 38(3-4):209–236CrossRefGoogle Scholar
  15. 15.
    Henssge C, Madea B (2007) Estimation of the time since death. Forensic Sci Int 165(2-3):182–184. CrossRefGoogle Scholar
  16. 16.
    Henssge C, Althaus L, Bolt J, Freislederer A, Haffner H-T, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death II. Integration of non-temperature-based methods. Int J Legal Med 113:320–331CrossRefGoogle Scholar
  17. 17.
    Henssge C, Althaus L, Bolt J, Freislederer A, Haffner H-T, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113 :303–319CrossRefGoogle Scholar
  18. 18.
    Crostack C, Sehner S, Raupach T, Anders S (2017) Re-establishment of rigor mortis: evidence for a considerably longer post-mortem time span. Int J Legal Med.
  19. 19.
    Warther S, Sehner S, Raupach T, Püschel K, Anders S (2012) Estimation of the time since death: post-mortem contractions of human skeletal muscles following mechanical stimulation (idiomuscular contraction). Int J Legal Med 126(3):399–405. CrossRefGoogle Scholar
  20. 20.
    Biermann F, Potente S (2011) The deployment of conditional probability distributions for death time estimation. Forensic Sci Int 210(1-3):82–86. CrossRefGoogle Scholar
  21. 21.
    Potente S, Kettner M, Verhoff MA, Ishikawa T (2017) Minimum time since death when the body has either reached or closely approximated equilibrium with ambient temperature. Forensic Sci Int 281:63–66. CrossRefGoogle Scholar
  22. 22.
    Marshall T, Hoare F (1962a) Estimating the time of death. The rectal cooling after death and its mathematical expression. J Forensic Sci 7(1):56–81Google Scholar
  23. 23.
    Marshall T, Hoare F (1962b) Estimating the time of death: the use of the cooling formula in the study of post-mortem body cooling. J Forensic Sci 7:189–210Google Scholar
  24. 24.
    Henssge C, Madea B (1988) Methoden zur Bestimmung der Todeszeit an Leichen. Arbeitsmethoden der medizinischen und naturwissenschaftlichen Kriminalistik. M. Schmidt-RömhildGoogle Scholar
  25. 25.
    Rubner M (1883) Über den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel. ZBiol 19:536–562Google Scholar
  26. 26.
    Meeh K (1897) Oberflächenmessungen des menschlichen Körpers. ZBiol 15:425–458Google Scholar
  27. 27.
    Henssge C (1992) Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions. Forensic Sci Int 54(1):51–66CrossRefGoogle Scholar
  28. 28.
    Madea B (ed) (2015) Estimation of the time since death, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  29. 29.
    Kanawaku Y, Kanetake J, Komiya A, Maruyama S, Funayama M (2007) Effects of rounding errors on postmortem temperature measurements caused by thermometer resolution. Int J Legal Med 121(4):267–273. CrossRefGoogle Scholar
  30. 30.
    Hubig M, Muggenthaler H, Mall G (2011a) Influence of measurement errors on temperature-based death time determination. Int J Legal Med 125(4):503–517. CrossRefGoogle Scholar
  31. 31.
    Hubig M, Muggenthaler H, Sinicina I, Mall G (2011b) Body mass and corrective factor: impact on temperature-based death time estimation. Int J Legal Med 125(3):437–444. CrossRefGoogle Scholar
  32. 32.
    Saukko P, Knight B (2004) Forensic pathology, 3rd edn. Edward Arnonld, LondonGoogle Scholar
  33. 33.
    Burger E, Dempers J, Steiner S, Shepherd R (2013) Henssge nomogram typesetting error. Forensic Sci Med Pathol 9(4):615–617. CrossRefGoogle Scholar
  34. 34.
    Madea B (2016) Methods for determining time of death. Forensic Sci Med Pathol 12(4):451–485. CrossRefGoogle Scholar
  35. 35.
    Institute of Forensic Medicine, University of Bonn (2017) website., Accessed 23 Aug 2017
  36. 36.
    National Institute of Standards and Technology (1989) International system of units.
  37. 37.
    LibreCad (2016) LibreCad 2.0.9., [Online; Accessed 26 Jan 2017]
  38. 38.
    Python (2010) Python 2.7.1., [Online; Accessed 26 Jan 2017]
  39. 39.
    Continuum analytics, 2016 ANACONDA 4.2.0 64 Bit for Linux., [Online; Accessed 26 Jan 2017]
  40. 40.
    GNU image manipulation program (2016) (GIMP) 2.8.16., [Online; Accessed 26 Jan 2017]
  41. 41.
    Roschier L (2016) PyNomo., [Online; Accessed 26 Jan 2017]
  42. 42.
    Adobe Systems (2017) What is PDF? Adobe portable document format — adobe acrobat DC., Accessed: 22 Aug 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Osaka City University Medical SchoolOsakaJapan
  2. 2.Department of Legal Medicine of Frankfurt Medical SchoolFrankfurt am MainGermany

Personalised recommendations