International Journal of Legal Medicine

, Volume 133, Issue 2, pp 633–639 | Cite as

Temperature: the weak point of forensic entomology

  • Damien CharabidzeEmail author
  • Valéry Hedouin


Measuring temperature is a key factor in forensic entomology. While noting factors to consider for a posteriori temperature estimation, many studies lack detailed methods or general rules allowing their integration into insect development-time calculations. This article proposes tools for determining the adequacy of weather station temperature datasets versus the local temperature experienced by carrion breeders. The idea is to start from a local scale (i.e., the cadaver) and gradually move to larger scales: at each step, the temperature can be increased, decreased or smoothed by environmental or biological factors. While a one-size-fits-all solution is not feasible for a complex and sensitive issue such as forensic meteorology, this checklist increases the reliability of minimum post-mortem interval (PMImin) estimation and the traceability of the proposed assumption.


Larval development Post-mortem interval Calliphoridae Maggot-mass effect Reliability 


Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interest.


  1. 1.
    Smith KGV (1986) A manual of forensic entomology. Trustees of the British Museum (Natural history), LondonGoogle Scholar
  2. 2.
    Byrd DJH, Castner JL (2009) Forensic entomology: the utility of arthropods in legal investigations, 2nd revised edition. CRC Press Inc, Boca Raton, p 705Google Scholar
  3. 3.
    Amendt J, Campobasso CP, Gaudry E et al (2006) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121:90–104. CrossRefGoogle Scholar
  4. 4.
    Archer MS (2004) The effect of time after body discovery on the accuracy of retrospective weather station ambient temperature corrections in forensic entomology. J Forensic Sci 49:553–559CrossRefGoogle Scholar
  5. 5.
    Hofer IMJ, Hart AJ, Martín-Vega D, Hall MJR (2017) Optimising crime scene temperature collection for forensic entomology casework. Forensic Sci Int 270:129–138. CrossRefGoogle Scholar
  6. 6.
    Weatherbee CR, Pechal JL, Stamper T, Benbow ME (2017) Post-colonization interval estimates using multi-species Calliphoridae larval masses and spatially distinct temperature data sets: a case study. Insects 8:40. CrossRefGoogle Scholar
  7. 7.
    Higley LG, Haskell N (2001) Insect development and forensic entomology. In: Byrd JH, Castner JL (eds) Forensic entomology. The utility of arthropods in legal investigations. CRC Press LLC, Boca Raton, pp 287–302Google Scholar
  8. 8.
    Ames C, Turner B (2003) Low temperature episodes in development of blowflies: implications for postmortem interval estimation. Med Vet Entomol 17:178–186. CrossRefGoogle Scholar
  9. 9.
    Marchenko MI (2001) Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Sci Int 120:89–109. CrossRefGoogle Scholar
  10. 10.
    Abdullah SR, Omar B, Bashah RMZRK, Nor FM, Swarhib MS, Othman HF, Wahid SA (2015) Forensic entomology of high-rise buildings in malaysia. Trop Biomed 32(2):291–299Google Scholar
  11. 11.
    Ikemoto T, Egami C (2013) Mathematical elucidation of the Kaufmann effect based on the thermodynamic SSI model. Appl Entomol Zool 48:313–323. CrossRefGoogle Scholar
  12. 12.
    Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Env Entomol 21:689–699CrossRefGoogle Scholar
  13. 13.
    Henssge C, Madea B (2007) Estimation of the time since death. Forensic Sci Int 165:182–184CrossRefGoogle Scholar
  14. 14.
    Bourel B, Callet B, Hédouin V, Gosset D (2003) Flies eggs: a new method for the estimation of short-term post-mortem interval? Forensic Sci Int 135:27–34. CrossRefGoogle Scholar
  15. 15.
    Mall G, Hubig M, Eckl M et al (2002) Modelling postmortem surface cooling in continuously changing environmental temperature. Leg Med 4:164–173. CrossRefGoogle Scholar
  16. 16.
    Huntington TE, Higley LG, Baxendale FP (2007) Maggot development during morgue storage and its effect on estimating the post-mortem interval. J Forensic Sci 52:453–458CrossRefGoogle Scholar
  17. 17.
    Johnson AP, Mikac KM, Wallman JF (2013) Thermogenesis in decomposing carcasses. Forensic Sci Int 231:271–277. CrossRefGoogle Scholar
  18. 18.
    May (1979) Insect thermoregulation. Annu Rev Entomol 24:313–349CrossRefGoogle Scholar
  19. 19.
    Sharanowski BJ, Walker EG, Anderson GS (2008) Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci Int 179:219–240CrossRefGoogle Scholar
  20. 20.
    Podhorna J, Aubernon C, Borkovcova M et al (2017) To eat or get heat: behavioral trade-offs between thermoregulation and feeding in gregarious necrophagous larvae. Insect Sci.
  21. 21.
    Aubernon C, Boulay J, Hédouin V, Charabidzé D (2016) Thermoregulation in gregarious dipteran larvae: evidence of species-specific temperature selection. Entomol Exp Appl 160:101–108. CrossRefGoogle Scholar
  22. 22.
    Charabidze D, Bourel B, Gosset D (2011) Larval-mass effect: characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci Int 211:61–66. CrossRefGoogle Scholar
  23. 23.
    Heaton V, Moffatt C, Simmons T (2014) Quantifying the temperature of maggot masses and its relationship to decomposition. J Forensic Sci 59:676–682. CrossRefGoogle Scholar
  24. 24.
    Johnson AP, Wighton SJ, Wallman JF (2014) Tracking movement and temperature selection of larvae of two forensically important blow fly species within a “maggot mass”. J Forensic Sci 59:1586–1591. CrossRefGoogle Scholar
  25. 25.
    Kotzé Z, Villet MH, Weldon CW (2016) Heat accumulation and development rate of massed maggots of the sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J Insect Physiol 95:98–104. CrossRefGoogle Scholar
  26. 26.
    Rivers DB, Thompson C, Brogan R (2011) Physiological trade-offs of forming maggot masses by necrophagous flies on vertebrate carrion. Bull Entomol Res 101:599–611. CrossRefGoogle Scholar
  27. 27.
    Heaton V, Moffatt C, Simmons T (2018) The movement of fly (Diptera) larvae within a feeding aggregation. Can Entomol 150:1–8. CrossRefGoogle Scholar
  28. 28.
    Heaton V (2014) Modelling the thermodynamics of maggot masses during decomposition. Dissertation, University of Central LancashireGoogle Scholar
  29. 29.
    Ceciliason A-S, Andersson MG, Lindström A, Sandler H (2018) Quantifying human decomposition in an indoor setting and implications for postmortem interval estimation. Forensic Sci Int 283:180–189. CrossRefGoogle Scholar
  30. 30.
    MacMaster G (2006) Environmental forensics and its effects on investigations. PageFree Pub, OtsegoGoogle Scholar
  31. 31.
    Scala JR, Wallace JR (2009) Forensic meteorology: the application of weather and climate. In: Forensic entomology the utility of arthropods in legal investigations, Second edn. CRC Press, Boca Raton, pp 519–538Google Scholar
  32. 32.
    Henssge C (1992) Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions. Forensic Sci Int 54:51–66CrossRefGoogle Scholar
  33. 33.
    Amendt J, Richards CS, Campobasso CP et al (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392. CrossRefGoogle Scholar
  34. 34.
    Bugelli V, Toni C, Domenici R, Vanin S (2013) Meteorological data: “non proximus sed similis”. Presentation, 9th European association for Forensic Entomology annual meeting, Coimbra, PortugalGoogle Scholar
  35. 35.
    Dourel L, Pasquerault T, Gaudry E, Vincent B (2010) Using estimated on-site ambient temperature has uncertain benefit when estimating postmortem interval. Psyche J Entomol 2010:1–7. CrossRefGoogle Scholar
  36. 36.
    Johnson AP, Wallman JF, Archer MS (2012) Experimental and casework validation of ambient temperature corrections in forensic entomology*,†. J Forensic Sci 57:215–221. CrossRefGoogle Scholar
  37. 37.
    Dabbs GR (2015) How should forensic anthropologists correct National Weather Service Temperature Data for use in estimating the postmortem interval? J Forensic Sci 60:581–587. CrossRefGoogle Scholar
  38. 38.
    Barry RG, Blanken PD (2016) Microclimate and Local Climate. University Press, CambridgeCrossRefGoogle Scholar
  39. 39.
    Archer MS, Jones SD, Wallman JF (2017) Delayed reception of live blowfly (Calliphora vicina and Chrysomya rufifacies) larval samples: implications for minimum postmortem interval estimates. Forensic Sci Res 3:1–13. Google Scholar
  40. 40.
    Thevan K, Ahmad AH, Rawi CSM, Singh B (2010) Growth of Chrysomya megacephala (Fabricius) maggots in a morgue cooler. J Forensic Sci 55:1656–1658. CrossRefGoogle Scholar
  41. 41.
    Bugelli V, Campobasso CP, Verhoff MA, Amendt J (2017) Effects of different storage and measuring methods on larval length values for the blow flies (Diptera: Calliphoridae) Lucilia sericata and Calliphora vicina. Sci Justice 57:159–164CrossRefGoogle Scholar
  42. 42.
    Gaudry E, Dourel L (2013) Forensic entomology: implementing quality assurance for expertise work. Int J Legal Med 127:1031–1037. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-LegaleUniv LilleLilleFrance
  2. 2.Unité de Taphonomie Médico-LégaleLilleFrance

Personalised recommendations