International Journal of Legal Medicine

, Volume 133, Issue 4, pp 1159–1165 | Cite as

An innovative 3D-3D superimposition for assessing anatomical uniqueness of frontal sinuses through segmentation on CT scans

  • Daniele GibelliEmail author
  • Michaela Cellina
  • Annalisa Cappella
  • Stefano Gibelli
  • Marta Maria Panzeri
  • Antonio Giancarlo Oliva
  • Giovanni Termine
  • Danilo De Angelis
  • Cristina Cattaneo
  • Chiarella Sforza
Original Article


Anatomical uniqueness plays a significant role in the personal identification process of unknown deceased. Frontal sinuses have been widely used in the past decades for this purpose, mostly using 2D X-ray techniques. However, the modern 3D CT-based segmentation methods may help in developing novel and more reliable methods of identification. This study aims at assessing the anatomical uniqueness of frontal sinuses through the 3D model registration. Thirty subjects who underwent two maxillofacial CT scans (interval: 1 month to 5 years) were selected from a hospital database. Frontal sinuses were automatically segmented through ITK-SNAP open source software and the 3D models belonging to the same patient were automatically superimposed according to the least point-to-point difference between the two surfaces. Two hundred patients were randomly selected from the same database and undergo the same procedure to perform 200 superimpositions of frontal sinuses belonging to different individuals, equally divided between males and females (mismatches). Statistically significant differences of average root mean square (RMS) point-to-point distance between the group of matches and mismatches, as well as possible differences according to sex, were assessed through Mann-Whitney U test (p < 0.05). In the group of matches, RMS ranged between 0.07 and 0.96 mm (mean RMS 0.35 ± 0.23 mm), while in the group of mismatches, it ranged between 0.96 and 10.29 mm (mean RMS 2.59 ± 1.79 mm), with a statistically significant difference (p < 0.0001). Neither the matches nor the mismatches group showed statistically significant differences according to sex. This study proposes a novel 3D approach for the assessment of anatomical uniqueness of frontal sinuses, providing both morphological and quantitative analysis, and a new method of identification based on 3D assessment of frontal sinuses, applicable when ante-mortem CT scans are available.


Personal identification Frontal sinuses 3D segmentation CT scan Volumetric analysis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    INTERPOL Disaster Victim Identification (DVI) guide. 2009.08/03/2015. Available from:, accessed 5 February 2018
  2. 2.
    Rabelo KA, Dos Anjos Pontual ML, de Queiroz Jordão N, de Paiva KM, de Moraes Ramos-Perez FM, dos Santos MS, dos Anjos Pontual A (2016) Human identification by FSS system adapted to cephalometric radiographs. Forensic Sci Int 262:227–32.
  3. 3.
    Verma P, Verma KG, Khosa R, Kumar S, Basavaraju S, Patwardhan N (2015) Combined use of frontal sinus and nasal septum pattern as an aid in forensics: a digital radiographic study. N Am J Med Sci 7:47–52. CrossRefGoogle Scholar
  4. 4.
    Cordner SM, Woodford N, Bassed R (2011) Forensic aspects of the 2009 Victorian bushfires disaster. Forensic Sci Int 205:2–7. CrossRefGoogle Scholar
  5. 5.
    Kirk NJ, Wood RE, Goldstein MM (2002) Skeletal identification using the frontal sinus region: a retrospective study of 39 cases. J Forensic Sci 47:318–323CrossRefGoogle Scholar
  6. 6.
    Nikam SS, Gadgil RM, Bhoosreddy AR, Shah KR, Shirsekar VU (2015) Personal identification in forensic science using uniqueness of radiographic image of frontal sinus. J Forensic Odontostomatol 33:1–7Google Scholar
  7. 7.
    Soares CB, Almeida MS, Lopes Pde M, Beltrão RV, Pontual Ados A, Ramos-Perez FM, Figueroa JN, Pontual ML (2016) Human identification study by means of frontal sinus imaginological aspects. Forensic Sci Int 262:183–189. CrossRefGoogle Scholar
  8. 8.
    Pfaefli M, Vock P, Dirnhofer R, Braun M, Bolliger SA, Thali MJ (2007) Post-mortem radiological CT identification based on classical ante-mortem X-ray examinations. Forensic Sci Int 171:111–117CrossRefGoogle Scholar
  9. 9.
    Ciaffi R, Gibelli D, Cattaneo C (2011) Forensic radiology and personal identification of unidentified bodies: a review. Radiol Med 116:960–968. CrossRefGoogle Scholar
  10. 10.
    Yoshino M, Miyasaka S, Sato H, Seta S (1987) Classification system of frontal sinus patterns by radiography. Its application to identification of unknown skeletal remains. Forensic Sci Int 34:289–299CrossRefGoogle Scholar
  11. 11.
    Patil N, Karjodkar FR, Sontakke S, Sansare K, Salvi R (2012) Uniqueness of radiographic patterns of the frontal sinus for personal identification. Imaging Sci Dent 42:213–217. CrossRefGoogle Scholar
  12. 12.
    Kullman L, Eklund B, Grundin R (1990) Value of the frontal sinus in identification of unknown persons. J Forensic Odontostomatol 8:3–10Google Scholar
  13. 13.
    Christensen AM (2005) Assessing the variation in individual frontal sinus outlines. Am J Phys Anthropol 127:291–295CrossRefGoogle Scholar
  14. 14.
    Ribeiro FA (2000) Standardized measurements of radiographic films of the frontal sinuses: an aid to identifying unknown persons. Ear Nose Throat J 79:26–33CrossRefGoogle Scholar
  15. 15.
    Besana JL, Rogers TL (2010) Personal identification using the frontal sinus. J Forensic Sci 55:584–589. CrossRefGoogle Scholar
  16. 16.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefGoogle Scholar
  17. 17.
    Cossellu G, De Luca S, Biagi R, Farronato G, Cingolani M, Ferrante L, Cameriere R (2015) Reliability of frontal sinus by cone beam-computed tomography (CBCT) for individual identification. Radiol Med 120:1130–1136. CrossRefGoogle Scholar
  18. 18.
    Kim DI, Lee UY, Park SO, Kwak DS, Han SH (2013) Identification using frontal sinus by three-dimensional reconstruction from computed tomography. J Forensic Sci 58:5–12. CrossRefGoogle Scholar
  19. 19.
    Codari M, Zago M, Guidugli GA, Pucciarelli V, Tartaglia GM, Ottaviani F, Righini S, Sforza C (2016) The nasal septum deviation index (NSDI) based on CBCT data. Dentomaxillofac Radiol 45:20150327. CrossRefGoogle Scholar
  20. 20.
    Chaiyasate S, Baron I, Clement P (2007) Analysis of paranasal sinus development and anatomical variations: a CT genetic study in twins. Clin Otolaryngol 32:93–97CrossRefGoogle Scholar
  21. 21.
    Pechnikova M, De Angelis D, Gibelli D, Vecchio V, Cameriere R, Zeqiri B, Cattaneo C (2014) Twins and the paradox of dental-age estimations: a caution for researchers and clinicians. Homo 65(4):330–337. CrossRefGoogle Scholar
  22. 22.
    Gibelli D, De Angelis D, Poppa P, Sforza C, Cattaneo C (2017) An assessment of how facial mimicry can change facial morphology: implications for identification. J Forensic Sci 62:405–410. CrossRefGoogle Scholar
  23. 23.
    Gibelli D, De Angelis D, Poppa P, Sforza C, Cattaneo C (2017) A view to the future: a novel approach for 3D-3D superimposition and quantification of differences for identification from next-generation video surveillance systems. J Forensic Sci 62:457–461. CrossRefGoogle Scholar
  24. 24.
    Beaini TL, Duailibi-Neto EF, Chilvarquer I, Melani RF (2015) Human identification through frontal sinus 3D superimposition: pilot study with cone beam computed tomography. J Forensic Legal Med 36:63–69. CrossRefGoogle Scholar
  25. 25.
    Owlia M, Yu L, Deible C, Hughes MA, Jovin F, Bump GM (2014) Head CT scan overuse in frequently admitted medical patients. Am J Med 127:406–10. 10.1016/j.amjmed.2014.01.023Google Scholar
  26. 26.
    Brenner DJ, Hall EJ, Phil D (2007) Computed tomography – an increasing source of radiation exposure. New Engl J Med 357:2277–2284CrossRefGoogle Scholar
  27. 27.
    Bosch de Basea M, Salotti JA, Pearce MS, Muchart J, Riera L, Barber I, Pedraza S, Pardina M, Capdevilla A, Espinosa A, Cardis E (2016) Trends and patterns in the use of computed tomography in children and young adults in Catalonia – results from the EPI-CT study. Pediatr Radiol 46:119–129. CrossRefGoogle Scholar
  28. 28.
    OECD (2017) Medical technologies. In: Health at a Glance 2013: OECD indicators., accessed 21 Feb 2018
  29. 29.
    Ciaffi R, Gibelli D, Cattaneo C (2011) Forensic radiology and personal identification of unidentified bodies: a review. Radiol Med 116:960–968. CrossRefGoogle Scholar
  30. 30.
    Ruder TD, Kraehenbuehl M, Gotsmy WF, Mathier S, Ebert LC, Thali MJ, Hatch GM (2012) Radiologic identification of disaster victims: a simple and reliable method using CT of the paranasal sinuses. Eur J Radiol 81(2):e132–e138. CrossRefGoogle Scholar
  31. 31.
    Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics 26:1305–1333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniele Gibelli
    • 1
    Email author
  • Michaela Cellina
    • 2
  • Annalisa Cappella
    • 3
  • Stefano Gibelli
    • 4
  • Marta Maria Panzeri
    • 5
  • Antonio Giancarlo Oliva
    • 2
  • Giovanni Termine
    • 4
  • Danilo De Angelis
    • 3
  • Cristina Cattaneo
    • 3
  • Chiarella Sforza
    • 1
  1. 1.LAFAS, Laboratorio di Anatomia Funzionale dell’Apparato Stomatognatico, Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilanItaly
  2. 2.Reparto di Radiologia, Ospedale FatebenefratelliASST Fatebenefratelli SaccoMilanItaly
  3. 3.LABANOF, Laboratorio di Antropologia e Odontologia Forense, Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilanItaly
  4. 4.Reparto di Otorinolaringoiatria, Ospedale FatebenefratelliASST Fatebenefratelli SaccoMilanItaly
  5. 5.Reparto di Radiologia DiagnosticaIRCCS Ospedale San RaffaeleMilanItaly

Personalised recommendations