Advertisement

International Journal of Legal Medicine

, Volume 133, Issue 4, pp 983–988 | Cite as

Identifying novel microhaplotypes for ancestry inference

  • Peng ChenEmail author
  • Wenjia Zhu
  • Fang Tong
  • Yan Pu
  • Youjia Yu
  • Shuainan Huang
  • Zheng Li
  • Lin Zhang
  • Weibo LiangEmail author
  • Feng ChenEmail author
Short Communication

Abstract

The use of DNA to determine the ancestry of an individual is becoming more and more important in the areas of forensics. Kidd et al. (Forensic Sci Int Genet 12:215–224, 2014) have been the first to identify and catalog haplotypes, termed as minihaplotypes (1–10-kilobase spans) and microhaplotypes (≤ 200 bp), with potential use in forensic analysis. In the present study, we selected 10 short ancestry informative microhaplotypes by calculating the informativeness (In) according to Rosenberg et al. (Am J Hum Genet 73(6):1402–1422, 2003). In total, 2504 individuals from 26 populations in 1000 Genomes Project database Phase 3 were enrolled. Among the studied microhaplotypes, eight of them are comprised of 3 SNPs while two microhaplotypes are made up of 4 SNPs. The size (molecular extent) range of 10 microhaplotypes is 5 to 48 bp with an average of 31.4 bp. The heterozygosity value ranges from 0.2235 to 0.8958 with an average of 0.6593. The average power of discrimination (PD) values is 0.7944 and ranges from 0.3786 to 0.9242. Analyses of this dataset provided clear differentiation of the populations from the Africa, East Asia, South Asia, and Europe biogeographic regions. However, individuals from American ancestry were not well separated. To conclude, our results revealed the significance of using microhaplotypes as an ancestry informative marker. The present panel could offer a valid complementary tool in forensic applications.

Keywords

Microhaplotype Ancestry SNP Ancestry informative marker 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No.81570378, No.81772020), the Science and Technology of Jiangsu Province China (BK20170048), and Jiangsu Specially-Appointed Professor program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2018_1881_MOESM1_ESM.docx (489 kb)
ESM 1 (DOCX 488 kb)
414_2018_1881_MOESM2_ESM.xlsx (22 kb)
ESM 2 (XLSX 22 kb)

References

  1. 1.
    Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65.  https://doi.org/10.1016/j.fsigen.2015.05.012 CrossRefGoogle Scholar
  2. 2.
    Kidd JR, Friedlaender FR, Speed WC, Pakstis AJ, De La Vega FM, Kidd KK (2011) Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investig Genet 2(1):1.  https://doi.org/10.1186/2041-2223-2-1 CrossRefGoogle Scholar
  3. 3.
    Phillips C, Parson W, Lundsberg B, Santos C, Freire-Aradas A, Torres M, Eduardoff M, Borsting C, Johansen P, Fondevila M, Morling N, Schneider P, Carracedo A, Lareu MV (2014) Building a forensic ancestry panel from the ground up: the EUROFORGEN Global AIM-SNP set. Forensic Sci Int Genet 11:13–25.  https://doi.org/10.1016/j.fsigen.2014.02.012 CrossRefGoogle Scholar
  4. 4.
    Jiang L, Wei YL, Zhao L, Li N, Liu T, Liu HB, Ren LJ, Li JL, Hao HF, Li Q, Li CX (2018) Global analysis of population stratification using a smart panel of 27 continental ancestry-informative SNPs. Forensic Sci Int Genet 35:e10–e12.  https://doi.org/10.1016/j.fsigen.2018.05.006 CrossRefGoogle Scholar
  5. 5.
    Elhaik E, Tatarinova T, Chebotarev D, Piras IS, Maria Calo C, De Montis A, Atzori M, Marini M, Tofanelli S, Francalacci P, Pagani L, Tyler-Smith C, Xue Y, Cucca F, Schurr TG, Gaieski JB, Melendez C, Vilar MG, Owings AC, Gomez R, Fujita R, Santos FR, Comas D, Balanovsky O, Balanovska E, Zalloua P, Soodyall H, Pitchappan R, Ganeshprasad A, Hammer M, Matisoo-Smith L, Wells RS (2014) Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nat Commun 5:3513.  https://doi.org/10.1038/ncomms4513 CrossRefGoogle Scholar
  6. 6.
    Qin P, Li Z, Jin W, Lu D, Lou H, Shen J, Jin L, Shi Y, Xu S (2014) A panel of ancestry informative markers to estimate and correct potential effects of population stratification in Han Chinese. Eur J Hum Genet 22(2):248–253.  https://doi.org/10.1038/ejhg.2013.111 CrossRefGoogle Scholar
  7. 7.
    Soundararajan U, Yun L, Shi M, Kidd KK (2016) Minimal SNP overlap among multiple panels of ancestry informative markers argues for more international collaboration. Forensic Sci Int Genet 23:25–32.  https://doi.org/10.1016/j.fsigen.2016.01.013 CrossRefGoogle Scholar
  8. 8.
    Li CX, Pakstis AJ, Jiang L, Wei YL, Sun QF, Wu H, Bulbul O, Wang P, Kang LL, Kidd JR, Kidd KK (2016) A panel of 74 AISNPs: improved ancestry inference within Eastern Asia. Forensic Sci Int Genet 23:101–110.  https://doi.org/10.1016/j.fsigen.2016.04.002 CrossRefGoogle Scholar
  9. 9.
    Pakstis AJ, Haigh E, Cherni L, ElGaaied ABA, Barton A, Evsanaa B, Togtokh A, Brissenden J, Roscoe J, Bulbul O, Filoglu G, Gurkan C, Meiklejohn KA, Robertson JM, Li CX, Wei YL, Li H, Soundararajan U, Rajeevan H, Kidd JR, Kidd KK (2015) 52 additional reference population samples for the 55 AISNP panel. Forensic Sci Int Genet 19:269–271.  https://doi.org/10.1016/j.fsigen.2015.08.003 CrossRefGoogle Scholar
  10. 10.
    Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G, Kittles R, Alarcon-Riquelme ME, Gregersen PK, Belmont JW, De La Vega FM, Seldin MF (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30(1):69–78.  https://doi.org/10.1002/humu.20822 CrossRefGoogle Scholar
  11. 11.
    Chen P, Yin C, Li Z, Pu Y, Yu Y, Zhao P, Chen D, Liang W, Zhang L, Chen F (2018) Evaluation of the microhaplotypes panel for DNA mixture analyses. Forensic Sci Int Genet 35:149–155.  https://doi.org/10.1016/j.fsigen.2018.05.003 CrossRefGoogle Scholar
  12. 12.
    Phillips C, Fernandez-Formoso L, Gelabert-Besada M, Garcia-Magarinos M, Santos C, Fondevila M, Carracedo A, Lareu MV (2013) Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing. Electrophoresis 34(8):1151–1162.  https://doi.org/10.1002/elps.201200621 CrossRefGoogle Scholar
  13. 13.
    Pakstis AJ, Fang R, Furtado MR, Kidd JR, Kidd KK (2012) Mini-haplotypes as lineage informative SNPs and ancestry inference SNPs. Eur J Hum Genet 20(11):1148–1154.  https://doi.org/10.1038/ejhg.2012.69 CrossRefGoogle Scholar
  14. 14.
    Kidd KK, Pakstis AJ, Speed WC, Lagace R, Chang J, Wootton S, Haigh E, Kidd JR (2014) Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci Int Genet 12:215–224.  https://doi.org/10.1016/j.fsigen.2014.06.014 CrossRefGoogle Scholar
  15. 15.
    Kidd KK, Speed WC (2015) Criteria for selecting microhaplotypes: mixture detection and deconvolution. Investig Genet 6(1):1.  https://doi.org/10.1186/s13323-014-0018-3 CrossRefGoogle Scholar
  16. 16.
    Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73(6):1402–1422.  https://doi.org/10.1086/380416 CrossRefGoogle Scholar
  17. 17.
    Rosenberg NA (2005) Algorithms for selecting informative marker panels for population assignment. J Comput Biol 12(9):1183–1201.  https://doi.org/10.1089/cmb.2005.12.1183 CrossRefGoogle Scholar
  18. 18.
    Kidd KK (2016) Proposed nomenclature for microhaplotypes. Hum Genomics 10(1):16.  https://doi.org/10.1186/s40246-016-0078-y CrossRefGoogle Scholar
  19. 19.
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research--an update. Bioinformatics (Oxford, England) 28(19):2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  20. 20.
    Gower JC (2005) Principal coordinates analysis. WileyGoogle Scholar
  21. 21.
    Gao Z, Chen X, Zhao Y, Zhao X, Zhang S, Yang Y, Wang Y, Zhang J (2018) Forensic genetic informativeness of an SNP panel consisting of 19 multi-allelic SNPs. Forensic Sci Int Genet 34:49–56.  https://doi.org/10.1016/j.fsigen.2018.01.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forensic MedicineNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.School of Life ScienceNanjing Normal UniversityNanjingPeople’s Republic of China
  3. 3.Department of Forensic MedicineTongji Medical College of Huazhong University of Science and TechnologyWuhanPeople’s Republic of China
  4. 4.School of MedicineSoutheast UniversityNanjingPeople’s Republic of China
  5. 5.Department of Forensic Biology, West China School of Basic Sciences and Forensic MedicineSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations