International Journal of Legal Medicine

, Volume 133, Issue 4, pp 975–982 | Cite as

Exploring the ancestry differentiation and inference capacity of the 28-plex AISNPs

  • Wei-Qi Hao
  • Jing Liu
  • Li Jiang
  • Jun-Ping Han
  • Ling Wang
  • Jiu-Ling Li
  • Quan Ma
  • Chao LiuEmail author
  • Hui-Jun WangEmail author
  • Cai-Xia LiEmail author
Short Communication


Inferring an unknown DNA’s ancestry using a set of ancestry-informative single nucleotide polymorphisms (SNPs) in forensic science is useful to provide investigative leads. This is especially true when there is no DNA database match or specified suspect. Thus, a set of SNPs with highly robust and balanced differential power is strongly demanded in forensic science. In addition, it is also necessary to build a genotyping database for estimating the ancestry of an individual or an unknown DNA. For the differentiation of Africans, Europeans, East Asians, Native Americans, and Oceanians, the Global Nano set that includes just 31 SNPs was developed by de la Puente et al. Its ability for differentiation and balance was evaluated using the genotype data of the 1000 Genomes Phase III project and the Stanford University HGDP-CEPH. Just 402 samples were genotyped and analyzed as a reference set based on statistical methods. To validate the differentiating capacity using more samples, we developed a single-tube 28-plex SNP assay in which the SNPs were chosen from the 31 allelic loci of the Global AIMs Nano set. Three tri-allelic SNPs used to differentiate mixed-source DNA contribute little to population differentiation and were excluded here. Then, 998 individuals from 21 populations were typed, and these genotypes were combined with the genotype data obtained from 1000 Genomes Phase III and the Stanford University HGDP-CEPH (3090 total samples,43 populations) to estimate the power of this multiplex assay and build a database for the further inference of an individual or an unknown DNA sample in forensic practice.


Forensic genetics AIMs Compound amplification Genetics structure analysis 



Special thanks are given to Professor Kenneth. K. Kidd of Yale University who supplied cell line DNA samples.

Funding information

This work was funded in part by the National Key Research and Development Program of China (2017YFC0803501) and the basic research project (2016JB039, 2017JB026, and 2016TGYDGAES14). Biological samples from the Caixia laboratory were funded by the National Infrastructure of Chinese Genetic Resources (NICGR:YCZYPT[2017]01-3) and the basic research project (2017JB025).

Compliance with ethical standards

All subjects provided written informed content and self-declared ancestry information.

Supplementary material

414_2018_1863_Fig4_ESM.png (3.2 mb)
Supplemental Fig.1

Electropherogram of 28-plex-SNP genotypes obtained from the control DNA 9947. (PNG 120 kb)

414_2018_1863_MOESM1_ESM.tif (839 kb)
High resolution image (TIF 838 kb)
414_2018_1863_Fig5_ESM.png (4.9 mb)
Supplemental Fig. 2

Pairwise Fst of the 28 loci. (PNG 165 kb)

414_2018_1863_MOESM2_ESM.tif (24.9 mb)
High resolution image (TIF 25518 kb)
414_2018_1863_MOESM3_ESM.pdf (213 kb)
Supplemental File 1 (Contains the results of DNA sequencing by Sangon Biotech Shanghai Co Ltd). (PDF 213 kb)
414_2018_1863_MOESM4_ESM.xlsx (19 kb)
Supplemental Table 1 The information of PCR primers, the SBE primers, and the amplicons of the 28 loci. (XLSX 18 kb)
414_2018_1863_MOESM5_ESM.xlsx (22 kb)
Supplemental Table 2 Table of the mean likelihood (L(K)) and variance for all of the K values. (XLSX 22 kb)
414_2018_1863_MOESM6_ESM.xlsx (187 kb)
Supplemental Table 3 AMP and LR of the test samples. (XLSX 186 kb)
414_2018_1863_MOESM7_ESM.xlsx (194 kb)
Supplemental Table 4 The ancestry component of the individuals. (XLSX 194 kb)
414_2018_1863_MOESM8_ESM.doc (36 kb)
Supplemental Table 5 The summary of the allele detection rate of three analyses of the standard DNA 9947 at six concentrations. (DOC 36 kb)
414_2018_1863_MOESM9_ESM.xlsx (14 kb)
Supplemental Table 6 The AMP and ancestry component of the 91, 94, and 100% profile completeness (based on experiments) of the 28 loci for 9947A and the 80% profile completeness (20% random removal of the profiles). (XLSX 13 kb)
414_2018_1863_MOESM10_ESM.xlsx (11 kb)
Supplemental Table 7 PSD values of the 28-plex SNP for the reference populations. (XLSX 10 kb)


  1. 1.
    Santos C, Fondevila M, Ballard D, Banemann R, Bento AM, Børsting C, Branicki W, Brisighelli F, Burrington M, Capal T, Chaitanya L, Daniel R, Decroyer V, England R, Gettings KB, Gross TE, Haas C, Harteveld J, Hoff-Olsen P, Hoffmann A, Kayser M, Kohler P, Linacre A, Mayr-Eduardoff M, McGovern C, Morling N, O'Donnell G, Parson W, Pascali VL, Porto MJ, Roseth A, Schneider PM, Sijen T, Stenzl V, Court DS, Templeton JE, Turanska M, Vallone PM, Oorschot RAHV, Zatkalikova L, Carracedo Á, Phillips C, EUROFORGEN-NoE Consortium (2015) Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: results of a collaborative EDNAP exercise. Forensic Sci Int Genet 19:56–67CrossRefGoogle Scholar
  2. 2.
    Cho S, Yu HJ, Han J, Kim Y, Lee J, Lee SD (2014) Forensic application of SNP-based resequencing array for individual identification. Forensic Sci Int Genet 13:45–52CrossRefGoogle Scholar
  3. 3.
    Borsting C, Mogensen HS, Morling N (2013) Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples. Forensic Sci Int Genet 7(3):345–352CrossRefGoogle Scholar
  4. 4.
    Wei YL, Li CX, Jia J, Hu L, Liu Y (2012) Forensic identification using a multiplex assay of 47 SNPs. J Forensic Sci 57(6):1448–1456CrossRefGoogle Scholar
  5. 5.
    Li CX, Pakstis AJ, Jiang L, Wei YL, Sun QF, Wu H, Bulbul O, Wang P, Kang LL, Kidd JR, Kidd KK (2016) A panel of 74 AISNPs: improved ancestry inference within Eastern Asia. Forensic Sci Int Genet 23:101–110CrossRefGoogle Scholar
  6. 6.
    Pakstis AJ, Haigh E, Cherni L, ElGaaied ABA, Barton A, Evsanaa B, Togtokh A, Brissenden J, Roscoe J, Bulbul O, Filoglu G, Gurkan C, Meiklejohn KA, Robertson JM, Li CX, Wei YL, Li H, Soundararajan U, Rajeevan H, Kidd JR, Kidd KK (2015) 52 additional reference population samples for the 55 AISNP panel. Forensic Sci Int Genet 19:269–271CrossRefGoogle Scholar
  7. 7.
    Phillips C, Fondevila M, Lareau MV (2012) A 34-plex autosomal SNP single base extension assay for ancestry investigations. Methods Mol Biol 830:109–126CrossRefGoogle Scholar
  8. 8.
    Inagaki S, Yamamoto Y, Doi Y, Takata T, Ishikawa T, Imabayashi K, Yoshitome K, Miyaishi S, Ishizu H (2004) A new 39-plex analysis method for SNPs including 15 blood group loci. Forensic Sci Int 144(1):45–57CrossRefGoogle Scholar
  9. 9.
    Wei Y et al (2016) A single-tube 27-plex SNP assay for estimating individual ancestry and admixture from three continents. Int J Legal Med 130(1):27–37CrossRefGoogle Scholar
  10. 10.
    Kidd JR, Friedlaender FR, Speed WC, Pakstis AJ, de la Vega FM, Kidd KK (2011) Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investig Genet 2(1):1CrossRefGoogle Scholar
  11. 11.
    Phillips C, Parson W, Lundsberg B, Santos C, Freire-Aradas A, Torres M, Eduardoff M, Børsting C, Johansen P, Fondevila M, Morling N, Schneider P, EUROFORGEN-NoE Consortium, Carracedo A, Lareu MV (2014) Building a forensic ancestry panel from the ground up: the EUROFORGEN Global AIM-SNP set. Forensic Sci Int Genet 11:13–25CrossRefGoogle Scholar
  12. 12.
    Galanter JM et al (2012) Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet 8(3):e1002554CrossRefGoogle Scholar
  13. 13.
    de la Puente M, Santos C, Fondevila M, Manzo L, EUROFORGEN-NoE Consortium, Carracedo Á, Lareu MV, Phillips C (2016) The Global AIMs Nano set: a 31-plex SNaPshot assay of ancestry-informative SNPs. Forensic Sci Int Genet 22:81–88CrossRefGoogle Scholar
  14. 14.
    Wei YL, Qin CJ, Liu HB, Jia J, Hu L, Li CX (2014) Validation of 58 autosomal individual identification SNPs in three Chinese populations. Croat Med J 55(1):10–13CrossRefGoogle Scholar
  15. 15.
    Frudakis T, Venkateswarlu K, Thomas MJ, Gaskin Z, Ginjupalli S, Gunturi S, Ponnuswamy V, Natarajan S, Nachimuthu PK (2003) A classifier for the SNP-based inference of ancestry. J Forensic Sci 48(4):771–782CrossRefGoogle Scholar
  16. 16.
    Budowle B, van Daal A (2008) Forensically relevant SNP classes. Biotechniques 44(5):603–608 610CrossRefGoogle Scholar
  17. 17.
    Sanchez JJ, Phillips C, Børsting C, Balogh K, Bogus M, Fondevila M, Harrison CD, Musgrave-Brown E, Salas A, Syndercombe-Court D, Schneider PM, Carracedo A, Morling N (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27(9):1713–1724CrossRefGoogle Scholar
  18. 18.
    Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SLB, Karoma NJ, Kungulilo S, Kim JJ, Lu RB, Odunsi A, Okonofua F, Parnas J, Schulz LO, Zhukova OV, Kidd JR (2006) Developing a SNP panel for forensic identification of individuals. Forensic Sci Int 164(1):20–32CrossRefGoogle Scholar
  19. 19.
    Porras-Hurtado L et al (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Front Genet 4:98CrossRefGoogle Scholar
  20. 20.
    Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  21. 21.
    Rosenberg NA (2004) DISTRUCT a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138CrossRefGoogle Scholar
  22. 22.
    Phillips C, Salas A, Sánchez JJ, Fondevila M, Gómez-Tato A, Alvarez-Dios J, Calaza M, de Cal MC, Ballard D, Lareu MV, Carracedo A, SNPforID Consortium (2007) Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet 1(3–4):273–280CrossRefGoogle Scholar
  23. 23.
    Yang L, Tan SJ, Yu HJ, Zheng BR, Qiao EF, Dong YL, Zan RG, Xiao CJ (2008) Gene admixture in ethnic populations in upper part of Silk Road revealed by mtDNA polymorphism. Sci China C Life Sci 51(5):435–444CrossRefGoogle Scholar
  24. 24.
    Ballantyne KN, van Oven M, Ralf A, Stoneking M, Mitchell RJ, van Oorschot RAH, Kayser M (2012) MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania. Forensic Sci Int Genet 6(4):425–436CrossRefGoogle Scholar
  25. 25.
    Shi W, Ayub Q, Vermeulen M, Shao RG, Zuniga S, van der Gaag K, de Knijff P, Kayser M, Xue Y, Tyler-Smith C (2010) A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations. Mol Biol Evol 27(2):385–393CrossRefGoogle Scholar
  26. 26.
    Kayser M (2017) Forensic use of Y-chromosome DNA: a general overview. Hum Genet 136:621–635CrossRefGoogle Scholar
  27. 27.
    Pereira R, Phillips C, Pinto N, Santos C, Santos SEB, Amorim A, Carracedo Á, Gusmão L (2012) Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One 7(1):e29684CrossRefGoogle Scholar
  28. 28.
    Phillips C, Aradas AF, Kriegel AK, Fondevila M, Bulbul O, Santos C, Rech FS, Carceles MDP, Carracedo Á, Schneider PM, Lareu MV (2013) Eurasiaplex: a forensic SNP assay for differentiating European and South Asian ancestries. Forensic Sci Int Genet 7(3):359–366CrossRefGoogle Scholar
  29. 29.
    Kidd KK, Speed WC, Pakstis AJ, Furtado MR, Fang R, Madbouly A, Maiers M, Middha M, Friedlaender FR, Kidd JR (2014) Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet 10:23–32CrossRefGoogle Scholar
  30. 30.
    Ovchinnikov IV, Malek MJ, Drees K, Kholina OI (2014) Mitochondrial DNA variation in Tajiks living in Tajikistan. Legal Med (Tokyo) 16(6):390–395CrossRefGoogle Scholar
  31. 31.
    Triki-Fendri S, Sánchez-Diz P, Rey-González D, Alfadhli S, Ayadi I, Ben Marzoug R, Carracedo Á, Rebai A (2016) Genetic structure of the Kuwaiti population revealed by paternal lineages. Am J Hum Biol 28(2):203–212CrossRefGoogle Scholar
  32. 32.
    Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Forensic MedicineSouthern Medical UniversityGuangzhouChina
  2. 2.Beijing Engineering Research Center of Crime Scene Evidence Examination, National Engineering Laboratory for Forensic ScienceInstitute of Forensic ScienceBeijingPeople’s Republic of China
  3. 3.Technology Department of Chaoyang Sub-bureauBeijing Public Security BureauBeijingChina
  4. 4.Guangdong Province Key Laboratory of Forensic GeneticsGuangzhou Forensic Science InstituteGuangzhouChina

Personalised recommendations