Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1317–1319 | Cite as

Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China

  • Weiwei Wu
  • Wenyan Ren
  • Honglei Hao
  • Hailun Nan
  • Xin He
  • Qiuling Liu
  • Dejian Lu
Population Data

Abstract

Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father–son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036–0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10−2. DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10−3 to 1 × 10−2. Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.

Keywords

Y chromosomal short tandem repeat (Y-STR) Mutation Microsatellites Rapidly mutating Y-STRs (RM Y-STRs) Chinese Han population 

Notes

Funding information

This work was financially supported by grants from the Key Research and Development Program of Zhejiang Province (2017C03026).

Compliance with ethical standards

Buccal swab samples of 1160 father–son pairs were taken from individuals in an Eastern Chinese Han population (Zhejiang Province). Informed consent was obtained from the volunteers or legally authorized representatives of all father–son pairs. All procedures performed in this study were approved by the Medical Ethics Committee of the Zhongshan Medical School of Sun Yat-sen University in accordance with the 2013 Helsinki Declaration.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

414_2018_1784_MOESM1_ESM.xls (23 kb)
Table S1 (XLS 23 kb)
414_2018_1784_MOESM2_ESM.doc (96 kb)
Table S2 (DOC 95 kb)
414_2018_1784_MOESM3_ESM.xls (42 kb)
Table S3 (XLS 41 kb)
414_2018_1784_MOESM4_ESM.doc (207 kb)
Table S4 (DOC 207 kb)
414_2018_1784_MOESM5_ESM.xls (15 kb)
Table S5 (XLS 15 kb)
414_2018_1784_MOESM6_ESM.pdf (43 kb)
Figure S1 (PDF 42 kb)
414_2018_1784_MOESM7_ESM.doc (26 kb)
Figure S2 (DOC 26 kb)

References

  1. 1.
    Ge J, Budowle B, Aranda XG, Planz JV, Eisenberg AJ, Chakraborty R (2009) Mutation rates at Y chromosome short tandem repeats in Texas populations. Forensic Sci Int Genet 3(3):179–184.  https://doi.org/10.1016/j.fsigen.2009.01.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Y, Zhang YJ, Zhang CC, Li R, Yang Y, Ou XL, Tong DY, Sun HY (2016) Genetic polymorphisms and mutation rates of 27 Y-chromosomal STRs in a Han population from Guangdong Province, Southern China. Forensic Sci Int Genet 21:5–9.  https://doi.org/10.1016/j.fsigen.2015.09.013 CrossRefPubMedGoogle Scholar
  3. 3.
    Lang M, Ye Y, Li J, Zhang Y, Yuan T, Hou Y (2017) Comprehensive mutation analysis of 53 Y-STR markers in father-son pairs. Forensic Sc Int: Genet Supp Ser 6:e57–e58.  https://doi.org/10.1016/j.fsigss.2017.09.004 Google Scholar
  4. 4.
    Oh YN, Lee HY, Lee EY, Kim EH, Yang WI, Shin KJ (2015) Haplotype and mutation analysis for newly suggested Y-STRs in Korean father-son pairs. Forensic Sci Int Genet 15:64–68.  https://doi.org/10.1016/j.fsigen.2014.09.023 CrossRefPubMedGoogle Scholar
  5. 5.
    Turrina S, Caratti S, Ferrian M, De Leo D (2015) Haplotype data and mutation rates for the 23 Y-STR loci of PowerPlex(R) Y 23 System in a Northeast Italian population sample. Int J Legal Med 129(4):725–728.  https://doi.org/10.1007/s00414-014-1053-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Ballantyne KN, Goedbloed M, Fang R, Schaap O, Lao O, Wollstein A, Choi Y, van Duijn K, Vermeulen M, Brauer S, Decorte R, Poetsch M, von Wurmb-Schwark N, de Knijff P, Labuda D, Vezina H, Knoblauch H, Lessig R, Roewer L, Ploski R, Dobosz T, Henke L, Henke J, Furtado MR, Kayser M (2010) Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications. Am J Hum Genet 87(3):341–353.  https://doi.org/10.1016/j.ajhg.2010.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Boattini A, Sarno S, Bini C, Pesci V, Barbieri C, De Fanti S, Quagliariello A, Pagani L, Ayub Q, Ferri G, Pettener D, Luiselli D, Pelotti S (2016) Mutation rates and discriminating power for 13 rapidly-mutating Y-STRs between related and unrelated individuals. PLoS One 11(11):e0165678.  https://doi.org/10.1371/journal.pone.0165678 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang W, Xiao C, Yu J, Wei T, Liao F, Wei W, Huang D (2017) Multiplex assay development and mutation rate analysis for 13 RM Y-STRs in Chinese Han population. Int J Legal Med 131(2):345–350.  https://doi.org/10.1007/s00414-016-1489-y CrossRefPubMedGoogle Scholar
  9. 9.
    Burgarella C, Navascues M (2011) Mutation rate estimates for 110 Y-chromosome STRs combining population and father-son pair data. Eur J Hum Genet 19(1):70–75.  https://doi.org/10.1038/ejhg.2010.154 CrossRefPubMedGoogle Scholar
  10. 10.
    Ballantyne KN, Keerl V, Wollstein A, Choi Y, Zuniga SB, Ralf A, Vermeulen M, de Knijff P, Kayser M (2012) A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet 6(2):208–218.  https://doi.org/10.1016/j.fsigen.2011.04.017 CrossRefPubMedGoogle Scholar
  11. 11.
    Rogalla U, Wozniak M, Swobodzinski J, Derenko M, Malyarchuk BA, Dambueva I, Kozinski M, Kubica J, Grzybowski T (2015) A novel multiplex assay amplifying 13 Y-STRs characterized by rapid and moderate mutation rate. Forensic Sci Int Genet 15:49–55.  https://doi.org/10.1016/j.fsigen.2014.11.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Hohoff C, Dewa K, Sibbing U, Hoppe K, Forster P, Brinkmann B (2007) Y-chromosomal microsatellite mutation rates in a population sample from northwestern Germany. Int J Legal Med 121(5):359–363.  https://doi.org/10.1007/s00414-006-0123-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Weng W, Liu H, Li S, Ge J, Wang H, Liu C (2013) Mutation rates at 16 Y-chromosome STRs in the South China Han population. Int J Legal Med 127(2):369–372.  https://doi.org/10.1007/s00414-012-0786-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Weiwei Wu
    • 1
  • Wenyan Ren
    • 1
  • Honglei Hao
    • 1
  • Hailun Nan
    • 2
  • Xin He
    • 2
  • Qiuling Liu
    • 2
  • Dejian Lu
    • 2
  1. 1.Zhejiang Key Laboratory of Forensic Science and TechnologyInstitute of Forensic Science of Zhejiang Provincial Public Security BureauHangzhouPeople’s Republic of China
  2. 2.Faculty of Forensic MedicineZhongshan Medical School of Sun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations