International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1391–1403 | Cite as

Towards multi-phase postmortem CT angiography in children: a study on a porcine model

  • F. Z. MokraneEmail author
  • L. Dercle
  • O. Meyrignac
  • É. Crubézy
  • H. Rousseau
  • N. Telmon
  • F. Dedouit
Original Article



Multi-phase postmortem computed tomography angiography (MPMCTA) is a growing technique, which is standardized for adults. Application of this protocol for a children population is not so well defined. Our study aims to adapt the adult’s protocol to children, using a porcine model.

Material and methods

Three groups of 18 pigs were studied, with a weight distribution between 4 and 48 kg. Different pump devices were used. Pigs of group I were studied using the Virtangio® machine, whereas pigs of groups II and III were studied using used the Medrad® machine. Study of vascular opacification was possible using a semi-quantitative method based on 26 arterial and 26 venous segments that were distributed over the entire body from the cephalic extremity to the posterior pawns.


While thoracic, abdominal, and pelvic vascular opacification were complete for each individual pig in a group, group III showed better vascular opacification for the cephalic extremity. This was also true for anterior and posterior pawns vascular opacification. Spearman correlation tests showed a significant relationship between anthropometric characteristics of pigs, injection parameters, and percentage of opacified segments. A higher percentage of opacification was obtained for individuals of lower weights, with comparatively lower quantities of contrast agent injected.


Postmortem computed tomography angiography (PMCTA) was possible for all the individuals, particularly for small weights (4 kg) using the Medrad® machine. However, further studies are needed to better understand the procedure.


Postmortem CT Angiography Porcine model Adults Children 

Supplementary material

414_2018_1783_Fig8_ESM.gif (52 kb)
Fig. 8

(supplementary material): Pig III-5 (4.7 kg). Anterior limbs vascular opacification. Axial (Fig. 8a on the left) and coronal (Fig. 8b on the right) reconstructions using thick MIP mode at the arterial time MPMCTA. Subclavian arteries are well opacified (white dotted arrows), as well as their division branches intended for the roots of limbs (white dotted circles). The distal third of the limbs is clearly opacified (white arrows). Figure 8c. Sagittal reconstruction using thick MIP mode at the venous time of MPMCTA focused on anterior right limb (ipsilateral). Visualization of arterial opacification of the distal third of the limb (yellow arrow), whereas the superficial venous network is only seen at the middle third/distal third junction of the limb (yellow dotted arrow). (GIF 52 kb)

414_2018_1783_MOESM1_ESM.tif (6.1 mb)
High Resolution Image (TIFF 6222 kb)
414_2018_1783_Fig9_ESM.gif (143 kb)
Fig. 9

(supplementary material): Posterior limbs vascular opacification. Figure 9a and b: Pig III-3 (7.1 kg). Sagittal oblique (Fig. 9a) and coronal (Fig. 9b) reconstructions of the right posterior limb in thick MIP mode at the arterial time of MPMCTA. Distal third arteries are opacified (white arrows). Figure 9c: Pig III-4 (5.2 kg). Sagittal reconstructions in thick MIP mode at the venous time of MPMCTA focused on the posterior left limb (contralateral). The primary iliac vein (white arrowhead) and the external iliac vein (white dotted arrow) are opacified. The veins of the proximal third of limb are also well visualized (white dotted circle). (GIF 142 kb)

414_2018_1783_MOESM2_ESM.tif (2.6 mb)
High Resolution Image (TIFF 2708 kb)


  1. 1.
    Grabherr S, Doenz F, Steger B et al (2011) Multi-phase post-mortem CT angiography: development of a standardized protocol. Int J Legal Med 125:791–802CrossRefPubMedGoogle Scholar
  2. 2.
    Jackowski C, Bolliger S, Aghayev E et al (2006) Reduction of postmortem angiography-induced tissue edema by using polyethylene glycol as a contrast agent dissolver. J Forensic Sci 51:1134–1137CrossRefPubMedGoogle Scholar
  3. 3.
    Thayyil S, Chitty LS, Robertson NJ, Taylor AM, Sebire NJ (2010) Minimally invasive fetal postmortem examination using magnetic resonance imaging and computerised tomography: current evidence and practical issues. Prenat Diagn 30(8):713–718. CrossRefPubMedGoogle Scholar
  4. 4.
    Thayyil S, Sebire NJ, Chitty LS, Wade A, Olsen O, Gunny RS, Offiah A, Saunders DE, Owens CM, Chong WKK, Robertson NJ, Taylor AM (2011) Post mortem magnetic resonance imaging in the fetus, infant and child: a comparative study with conventional autopsy (MaRIAS Protocol). BMC Pediatr 11(1):120. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Krentz BV, Alamo L, Grimm J et al (2016) Performance of post-mortem CT compared to autopsy in children. Int J Legal Med 130(4):1089–1099. CrossRefPubMedGoogle Scholar
  6. 6.
    Zamir A, Arthurs OJ, Hagen CK, Diemoz PC, Brochard T, Bravin A, Sebire NJ, Olivo A (2016) X-ray phase contrast tomography; proof of principle for post-mortem imaging. Br J Radiol 89(1058):20150565. CrossRefPubMedGoogle Scholar
  7. 7.
    Noda Y, Yoshimura K, Tsuji S et al (2013) Postmortem computed tomography imaging in the investigation of nontraumatic death in infants and children. Biomed Res Int 2013:e327903CrossRefGoogle Scholar
  8. 8.
    Woźniak KJ, Moskała A, Kluza P et al (2015) Whole-body post-mortem computed tomography angiography of a newborn revealing transposition of great arteries. Int J Legal Med 129:1253–1258CrossRefPubMedGoogle Scholar
  9. 9.
    Gorincour G, Chevallier C, Grabherr S et al (2016) Postmortem whole body CT angiography using aqueous contrast agent. In: Atlas of postmortem angiography. Springer, pp 89–102.
  10. 10.
    Sarda-Quarello L, Bartoli C, Laurent P-E et al (2016) Whole body perinatal postmortem CT angiography. Diagn Interv Imaging 97:121–124CrossRefPubMedGoogle Scholar
  11. 11.
    Mokrane F-Z, Savall F, Rérolle C et al (2014) The usefulness of post-mortem CT angiography in injuries caused by falling from considerable heights: three fatal cases. Diagn Interv Imaging 95:1085–1090CrossRefPubMedGoogle Scholar
  12. 12.
    Vogel B, Heinemann A, Gulbins H, Treede H, Reichenspurner H, Püschel K, Vogel H (2016) Post-mortem computed tomography and post-mortem computed tomography angiography following transcatheter aortic valve implantation†. Eur J Cardiothorac Surg Off J Eur Assoc Cardio-Thorac Surg 49(1):228–233. CrossRefGoogle Scholar
  13. 13.
    Heinemann A, Vogel H, Heller M, Tzikas A, Püschel K (2015) Investigation of medical intervention with fatal outcome: the impact of post-mortem CT and CT angiography. Radiol Med (Torino) 120(9):835–845. CrossRefGoogle Scholar
  14. 14.
    Sieswerda-Hoogendoorn T, Soerdjbalie-Maikoe V, Maes A, van Rijn RR (2013) The value of post-mortem CT in neonaticide in case of severe decomposition: description of 12 cases. Forensic Sci Int 233(1-3):298–303. CrossRefPubMedGoogle Scholar
  15. 15.
    Fleming P, Blair P, Bacon C, Berry J (2000) Sudden unexpected deaths in infancy: the CESDI SUDI studies 1993–1996. Lond Station Off 1–5Google Scholar
  16. 16.
    Bloch J, Denis P, Jezewski-Serra D, et al. (2007) Les Morts Inattendues Des Nourrissons de Moins de 2 Ans.” Enquête Nationale 2009.
  17. 17.
    Dwyer T, Ponsonby A-L (1996) Sudden infant death syndrome: after the“ back to sleep” campaign. BMJ 313(7051):180–181. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hutchinson JC, Arthurs OJ, Sebire NJ (2016) Postmortem research: innovations and future directions for the perinatal and paediatric autopsy. Arch Dis Child Educ Pract Ed 101(1):54–56. CrossRefPubMedGoogle Scholar
  19. 19.
    Addison S, Arthurs OJ, Thayyil S (2014) Post-mortem MRI as an alternative to non-forensic autopsy in foetuses and children: from research into clinical practice. Br J Radiol 87(1036):20130621. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hiebl B, Müller C, Hünigen H et al (2010) Gross anatomical variants of the vasculature of the Göttingen Minipig™. Appl Cardiopulm Pathophysiol 14:236–243Google Scholar
  21. 21.
    Dondelinger RF, Ghysels MP, Brisbois D, Donkers E, Snaps FR, Saunders J, Devière J (1998) Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur Radiol 8(7):1254–1273. CrossRefPubMedGoogle Scholar
  22. 22.
    Gillilan LA, Markesbery WR (1963) Arteriovenous shunts in the blood supply to the brains of some common laboratory animals--with special attention to the rete mirabile conjugatum in the cat. J Comp Neurol 121(3):305–311. CrossRefPubMedGoogle Scholar
  23. 23.
    Sahni D, Kaur GD, Jit H, Jit I (2008) Anatomy & distribution of coronary arteries in pig in comparison with man. Indian J Med Res 127(6):564–570PubMedGoogle Scholar
  24. 24.
    Chatelain E (1973) Vascularisation arterielle et veineuse des organes digestifs abdominaux et de leurs annexes chez le porc (Sus scrofa domesticus). I. Artère coeliaque (A. coeliaca). Ann Rech Vet 4:437Google Scholar
  25. 25.
    Haacke N, Unger JK, Haidenhein C, Russ M, Hiebl B, Niehues SM (2011) Pig specific vascular anatomy allows acute infrarenal aortic occlusion without hind limb ischemia and stepwise occlusion without clinical signs. Clin Hemorheol Microcirc 48(1):173–185. PubMedCrossRefGoogle Scholar
  26. 26.
    Sack WO, et al. (1982) Essentials of pig anatomy. Horowitz/Kramer atlas of musculoskeletal anatomy of the pig. Veterinary Textbooks, 36 Woodcrest AvenueGoogle Scholar
  27. 27.
    Seldinger SI (1953) Catheter replacement of the needle in percutaneous arteriography: a new technique. Acta Radiol 39(5):368–376. CrossRefPubMedGoogle Scholar
  28. 28.
    Higgs ZCJ, Macafee DAL, Braithwaite BD, Maxwell-Armstrong CA (2005) The Seldinger technique: 50 years on. Lancet 366(9494):1407–1409. CrossRefPubMedGoogle Scholar
  29. 29.
    Angiographic injector and angiographic syringe for use therewithGoogle Scholar
  30. 30.
    Mokrane FZ, Savall F, Dercle L, Crubezy E, Telmon N, Rousseau H, Dedouit F (2017) Technical note: A preliminary comparative study between classical and interventional radiological approaches for multi-phase post-mortem CT angiography. Forensic Sci Int 271:23-32.
  31. 31.
    Bruguier C, Mosimann PJ, Vaucher P, Uské A, Doenz F, Jackowski C, Mangin P, Grabherr S (2013) Multi-phase postmortem CT angiography: recognizing technique-related artefacts and pitfalls. Int J Legal Med 127(3):639–652. CrossRefPubMedGoogle Scholar
  32. 32.
    Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2013. ISBN 3-900051-07-0Google Scholar
  33. 33.
    Chevallier C, Michaud K, Palmiere C et al (2015) Multiphase postmortem computed tomography angiography in pediatrics: a case report. Am J Forensic Med Pathol 36:239–244CrossRefPubMedGoogle Scholar
  34. 34.
    Bradley AL, Swain MV, Neil Waddell J, Das R, Athens J, Kieser JA (2014) A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model. J Mech Behav Biomed Mater 33:67–75. CrossRefPubMedGoogle Scholar
  35. 35.
    Tang T, Weiss MD, Borum P, Turovets S, Tucker D, Sadleir R (2016) In vivo quantification of intraventricular hemorrhage in a neonatal piglet model using an EEG-layout based electrical impedance tomography array. Physiol Meas 37(6):751–764. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Habib CA, Utriainen D, Peduzzi-Nelson J, Dawe E, Mattei J, Latif Z, Casey K, Haacke EM (2013) MR imaging of the yucatan pig head and neck vasculature. J Magn Reson Imaging 38(3):641–649. CrossRefPubMedGoogle Scholar
  37. 37.
    Burbridge B, Matte G, Remedios A (2004) Complex intracranial arterial anatomy in swine is unsuitable for cerebral infarction projects. Can Assoc Radiol J J Assoc Can Radiol 55:326–329Google Scholar
  38. 38.
    Bruguier C, Grabherr S (2016) Radiologic Artefacts of Postmortem Computed Tomography Angiography. In: Grabherr S, Grimm J, Heinemann A (eds) Atlas of Postmortem Angiography. Springer, Cham,
  39. 39.
    Vogel H, Heinemann A (2016) Gastrointestinal Tract. In: Grabherr S, Grimm J, Heinemann A (eds) Atlas of Postmortem Angiography. Springer, Cham,
  40. 40.
    Ashwini CA, Shubha R, Jayanthi KS (2008) Comparative anatomy of the circle of Willis in man, cow, sheep, goat, and pig. Neuroanatomy 7:54–65Google Scholar
  41. 41.
    Massoud TF, Vinters HV, Chao KH, Viñuela F, Jahan R (2000) Histopathologic characteristics of a chronic arteriovenous malformation in a swine model: preliminary study. AJNR Am J Neuroradiol 21(7):1268–1276PubMedGoogle Scholar
  42. 42.
    Capuani C, Guilbeau-Frugier C, Mokrane F-Z et al (2014) Tissue microscopic changes and artifacts in multi-phase post-mortem computed tomography angiography in a hospital setting: a fatal case of systemic vasculitis. Forensic Sci Int 242:e12–e17CrossRefPubMedGoogle Scholar
  43. 43.
    Wittig H, Stumm C, Eplinius F, Hecht L (2016) Histology After Postmortem Angiography. In: Grabherr S, Grimm J, Heinemann A (eds) Atlas of Postmortem Angiography. Springer, Cham,

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. Z. Mokrane
    • 1
    • 2
    Email author
  • L. Dercle
    • 3
    • 4
  • O. Meyrignac
    • 1
  • É. Crubézy
    • 2
  • H. Rousseau
    • 1
  • N. Telmon
    • 2
    • 5
  • F. Dedouit
    • 2
    • 6
  1. 1.Radiology DepartmentRangueil University HospitalToulouseFrance
  2. 2.French National Center for Scientific ResearchAMIS Laboratory: University of ToulouseToulouseFrance
  3. 3.Gustave Roussy InstituteUniversité Paris-SaclayVillejuifFrance
  4. 4.New York Presbyterian HospitalColumbia UniversityNew YorkUSA
  5. 5.Forensic DepartmentRangueil University HospitalToulouseFrance
  6. 6.Unit of Forensic and Anthropological ImagingCentre universitaire romand de médecine légale (CURML)Lausanne 25Switzerland

Personalised recommendations