Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1321–1331 | Cite as

Zornia latifolia: a smart drug being adulterated by Stylosanthes guianensis

  • L. Cornara
  • A. P. Fortuna-Perez
  • I. Bruni
  • A. Salis
  • G. Damonte
  • B. Borghesi
  • M. Clericuzio
Original Article

Abstract

Dried herbal preparations, based on “Zornia latifolia,” are commonly sold on web, mainly for their supposed hallucinogenic properties. In this work, we demonstrate that these commercial products contain a different Fabacea, i.e., Stylosanthes guianensis, a cheaper plant, widely cultivated in tropical regions as a fodder legume. We were provided with plant samples of true Zornia latifolia from Brazil, and carried out a thorough comparison of the two species. The assignment of commercial samples was performed by means of micro-morphological analysis, DNA barcoding, and partial phytochemical investigation. We observed that Z. latifolia contains large amounts of flavonoid di-glycosides derived from luteolin, apigenin, and genistein, while in S. guianensis lesser amounts of flavonoids, mainly derived from quercetin, were found. It is likely that the spasmolytic and anxiolytic properties of Z. latifolia, as reported in traditional medicine, derive from its contents in apigenin and/or genistein.

Keywords

Smart drugs Morphologic analysis DNA barcoding Luteolin Apigenin Genistein 

References

  1. 1.
    Zuba D, Byrska B, Maciow M (2011) Comparison of “herbal highs” composition. Anal Bioanal Chem 400:119–126.  https://doi.org/10.1007/s00216-011-4743-7. CrossRefPubMedGoogle Scholar
  2. 2.
    Cornara L, Borghesi B, Canali C, Andrenacci M, Basso M, Federici S, Labra M (2013) Smart drugs: green shuttle or real drug? Int J Legal Med 127(6):1109–1123CrossRefPubMedGoogle Scholar
  3. 3.
    Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) “Spice” and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44(5):832–837.  https://doi.org/10.1002/jms.1558 CrossRefPubMedGoogle Scholar
  4. 4.
    Fortuna-Perez AP, Tozzi AMGA (2011) Nomenclatural changes for Zornia (Leguminosae, Papilionoideae, Dalbergieae) in Brazil. Novon 21(3):331–337.  https://doi.org/10.3417/2010040 CrossRefGoogle Scholar
  5. 5.
    Bentham G (1859) Papilionaceae. Pp. 80–85 in C. F. P. de Martius & A. G. Eichler (editors), Flora Brasiliensis, Vol. 15, Parte 1. F. Fleischer, LeipzigGoogle Scholar
  6. 6.
    Mohlenbrock R (1961) A monograph of the leguminous genus Zornia. Webbia 16(1):1–141.  https://doi.org/10.1080/00837792.1961.10669720 CrossRefGoogle Scholar
  7. 7.
    Sedefov R, Gallegos A, King L, Lopez D, Auwarter V, Hughes B, Griffiths P (2009) Understanding the spice phenomenon. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) PortugalGoogle Scholar
  8. 8.
    Schultes RE, Hofmann A (1979). Plants of the Gods, McGraw-Hill, New York. Reprinted in 1992, Healing arts, RochesterGoogle Scholar
  9. 9.
    Von Reis S, Lipp FJ (1982) New plant sources for drugs and foods from the NY botanical garden herbarium. Harvard University PressGoogle Scholar
  10. 10.
    Schultes RE, Farnsworth NR (1980) Ethnomedical, botanical and phytochemical aspects of natural hallucinogens. Bot Mus Leafl Harv Univ 28(2):123–214Google Scholar
  11. 11.
    López J (1981) Isolation of coumarin in Zornia diphylla L. Ing Cienc Quim 5:96–97Google Scholar
  12. 12.
    Igwe SA, Okawa ANC, Akunyili DN (2001) Preliminary phytochemical and pharmacological studies of Zornia latifolia extracts. Journal of Health and Visual Science 3:12–19Google Scholar
  13. 13.
    Rojas A, Rojas JI et al (1999) Spasmolytic activity of some plants used by the Otomi Indians of Queretaro (Mexico) for the treatment of gastrointestinal disorders. Phytomedicine 6(5):367–371.  https://doi.org/10.1016/S0944-7113(99)80061-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Arunkumar R, Ajikumaran Nair S, Subramoniam A (2012) Effectiveness of Zornia diphylla (L.) Pers, against fungal diseases. Ann Phytomed 1:81–89Google Scholar
  15. 15.
    Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer-Verlag, HeidelbergGoogle Scholar
  16. 16.
    Geetha KM, Bhavya S, Murugan V (2012) Anticonvulsant activity of the methanolic extract of whole plant of Zornia diphylla (Linn) Pers. J Pharm Res 5(7):3670–3672Google Scholar
  17. 17.
    DeFilipps RA, Maina SL, Crepin J (2004) Medicinal plants of the Guianas (Guyana, Surinam, French Guiana). Natural Museum of Natural History. Smithsonian Institution, Washington DCGoogle Scholar
  18. 18.
    Clericuzio M, Burlando B, Borghesi B, Salis A, Damonte G, Ribulla S, Cornara L (2017) Antiproliferative hydroxy-fatty acids from the fodder legume Stylosanthes guianensis. J Pharm Biomed Anal 141:157–164CrossRefPubMedGoogle Scholar
  19. 19.
    Pearse AG (1985) Histochemistry, Theoretical and applied, analytical technology. 4th Ed. Churchill Livingstone, New YorkGoogle Scholar
  20. 20.
    O’Brien TP, Feder N, Mccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373CrossRefGoogle Scholar
  21. 21.
    Johansen DA (1940) Plant microtechnique. McGraw–Hill Book Co., New YorkGoogle Scholar
  22. 22.
    Lillie RD (1965) Histopathologic technic and practical histochemistry. McGraw–Hill Book Co, New YorkGoogle Scholar
  23. 23.
    Gerlach D (1969) Botanische Mikrotechnik: Eine Einführung. Georg Thieme, StuttgartGoogle Scholar
  24. 24.
    Meira RMSA, Martins FM (2003) Técnica de inclusão de material herborizado em historesina. Rev Árvore 27(1):109–112.  https://doi.org/10.1590/S0100-67622003000100015 CrossRefGoogle Scholar
  25. 25.
    Vidal BC (1977) Acid glycosaminoglycans and endochondral ossification: microespectrophotometric evaluation and macromolecular orientation. Cell Mol Biol 22:45–64Google Scholar
  26. 26.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Mezzasalma V, Ganopoulos I, Galimberti A, Cornara L, Ferri E, Labra M (2017) Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification. Int J Legal Med 131(1):1–19.  https://doi.org/10.1007/s00414-016-1460-y CrossRefPubMedGoogle Scholar
  28. 28.
    Fay MF, Bayer C, Alverson WS, de Bruijn AY, Chase MW (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 47(1):43–50.  https://doi.org/10.2307/1224017 CrossRefGoogle Scholar
  29. 29.
    Dunning LT, Savolainen V (2010) Broad-scale amplification of matK for DNA barcoding plants, a technical note. Bot J Linn Soc 164(1):1–9.  https://doi.org/10.1111/j.1095-8339.2010.01071.x CrossRefGoogle Scholar
  30. 30.
    Newmaster SG, Ragupathy S, Janovec J (2009) A botanical renaissance: state-of the- art DNA barcoding facilitates an automated identification technology system for plants. Int J Comput App Technol 35(1):50–60.  https://doi.org/10.1504/IJCAT.2009.024595 CrossRefGoogle Scholar
  31. 31.
    Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102(23):8369–8374.  https://doi.org/10.1073/pnas.0503123102 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Brubaker CL, Horner HT (1989) Development of epidermal crystals in leaflets of Stylosanthes guianensis (Leguminosae; Papilionoideae). Can J Bot 67(6):1664–1670.  https://doi.org/10.1139/b89-210 CrossRefGoogle Scholar
  33. 33.
    Da Silva Matos D, Leme FM, Dias ES, Arruda RCO (2013) Anatomia foliar de três espécies de Stylosanthes SW. e sua associação com a composição e formação potencial de fitobezoares em bovinos. Ciência Rural 43(11):2049–2055.  https://doi.org/10.1590/S0103-84782013001100021 CrossRefGoogle Scholar
  34. 34.
    Fortuna-Perez AP, Castro MM, Tozzi AMGA (2012) Leaflet secretory structures of five taxa of the genus Zornia J.F. Gmel. (Leguminosae, Papilionoideae, Dalbergieae) and their systematic significance. Plant Syst Evol 298(8):1415–1424.  https://doi.org/10.1007/s00606-012-0647-z CrossRefGoogle Scholar
  35. 35.
    Pushpa B, Dayal R (1993) A flavone glycoside from Dalbergia stipulacea leaves. Phytochemistry 33(3):731–732CrossRefGoogle Scholar
  36. 36.
    De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Rev Int 44(3):693–702.  https://doi.org/10.1016/j.foodres.2010.12.032 CrossRefGoogle Scholar
  37. 37.
    De Mattia F, Gentili R, Bruni I, Galimberti A, Sgorbati S, Casiraghi M, Labra M (2012) A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Bot J Linn Soc 169:518–529CrossRefGoogle Scholar
  38. 38.
    Viola H, Wasowski C, Stein MLD, Wolfman C, Silveira R, Dajas F, Medina JH, Paladini AC (1995) Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepines receptors-ligand with anxiolytic effects. Planta Med 61(03):213–216.  https://doi.org/10.1055/s-2006-958058 CrossRefPubMedGoogle Scholar
  39. 39.
    Suresh K, Anupam S (2006) Apigenin: the anxiolytic constituent of Turnera aphrodisiaca. Pharm Biol 44(2):84–90CrossRefGoogle Scholar
  40. 40.
    Salgueiro JB, Ardenghi P, Dias M, Ferreira MBC, Izquierdo I, Medina JH (1997) Anxyolitic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol Biochem Behav 58(4):887–891.  https://doi.org/10.1016/S0091-3057(97)00054-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Rodrìguez-Landa JF, Hernàndez-Figueroa JD, Hernandez-Calderón BC, Saavedra M (2009) Anxiolytic-like effect of phytoestrogen genistein in rats with long-term absence of ovarian hormones in the black and white model. Prog Neuro-Psychopharmacol Biol Psychiatry 33(2):367–372.  https://doi.org/10.1016/j.pnpbp.2008.12.024 CrossRefGoogle Scholar
  42. 42.
    Huo X-J, Liu W, Qiu M-H, Huang Z-L, Qu W-M (2012) Genistein induces non-rapid eye movement sleep in mice. Sleep Biol Rhytms 10(4):278–286.  https://doi.org/10.1111/j.1479-8425.2012.00571.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento DISTAVUniversità di GenovaGenoaItaly
  2. 2.Dept of BotUniv Estadual PaulistaBotucatuBrazil
  3. 3.Dipartimento Biotecnol & BiosciUniversità Milano BicoccaMilanItaly
  4. 4.Center of Excellence for Biomedical Research (CEBR)Università di GenovaGenoaItaly
  5. 5.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations