Advertisement

Genetic characterization of 32 X-InDels in a population sample from São Paulo State (Brazil)

  • Juliana MartinezEmail author
  • Fernanda Silva Polverari
  • Flávia Alves de Jesus Silva
  • Danilo Faustino Braganholi
  • Joyce Aparecida Martins Lopes Ferraz
  • Leonor Gusmão
  • Regina Maria Barretto Cicarelli
Population Data

Abstract

X-chromosomal markers can be useful in some forensic cases, where the analysis of the autosomal markers is not conclusive. In this study, a population sample of 500 unrelated individuals born in São Paulo State was characterized for 32 X-InDel markers. No deviations from the Hardy–Weinberg equilibrium were detected, except for MID1361. The 32 X-InDels showed an accumulated power of discrimination of 0.9999999999993 in females and 0.99999993 in males and an exclusion chance of 0.999996 in trios and 0.99995 in duos. São Paulo showed lower genetic distances to the Colombian admixed and European populations than to Native American, Asian, or African populations. Ancestry analysis revealed 41.8% European, 31.6% African, and 26.6% Native American contributions. Segregation analysis was performed in 101 trios, and the mutation rate was estimated to be low.

Keywords

Forensic genetics Human identification Kinship testing Insertion/deletion polymorphism X chromosome 

Notes

Supplementary material

414_2018_1988_MOESM1_ESM.docx (399 kb)
ESM 1 (DOCX 399 kb)
414_2018_1988_MOESM2_ESM.xlsx (97 kb)
ESM 2 (XLSX 97 kb)
414_2018_1988_MOESM3_ESM.xlsx (13 kb)
ESM 3 (XLSX 13 kb)

References

  1. 1.
    Gomes C, Magalhães M, Alves C, Amorim A, Pinto N, Gusmão L (2012) Comparative evaluation of alternative batteries of genetic markers to complement autosomal STRs in kinship investigations: autosomal indels vs. X-chromosome STRs. Int J Legal Med 126:917–921.  https://doi.org/10.1007/s00414-012-0768-5 CrossRefGoogle Scholar
  2. 2.
    Pinto N, Magalhães M, Conde-Sousa E, Gomes C, Pereira R, Alves C, Gusmão L, Amorim A (2013) Assessing paternities with inconclusive STR results: the suitability of bi-allelic markers. Forensic Sci Int Genet 7:16–21.  https://doi.org/10.1016/j.fsigen.2012.05.002 CrossRefGoogle Scholar
  3. 3.
    Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Krause D (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117:67–74.  https://doi.org/10.1007/s00414-002-0352-5 Google Scholar
  4. 4.
    Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1:93–99.  https://doi.org/10.1016/j.fsigen.2007.03.003 CrossRefGoogle Scholar
  5. 5.
    Tillmar AO, Kling D, Butler JM, Parson W, Prinz M, Schneider PM, Egeland T, Gusmão L (2017) DNA Commission of the International Society for Forensic Genetics (ISFG): guidelines on the use of X-STRs in kinship analysis. Forensic Sci Int Genet 29:269–275.  https://doi.org/10.1016/j.fsigen.2017.05.005
  6. 6.
    Pinto N, Gusmão L, Amorim A (2011) X-chromosome markers in kinship testing: a generalisation of the IBD approach identifying situations where their contribution is crucial. Forensic Sci Int Genet 5:27–32.  https://doi.org/10.1016/j.fsigen.2010.01.011 CrossRefGoogle Scholar
  7. 7.
    Freitas NSC, Resque RL, Ribeiro-Rodrigues EM, Guerreiro JF, Santos NPC, Ribeiro-dos-Santos Â, Santos S (2010) X-linked insertion/deletion polymorphisms: forensic applications of a 33-markers panel. Int J Legal Med 124:589–593.  https://doi.org/10.1007/s00414-010-0441-9 CrossRefGoogle Scholar
  8. 8.
    Pereira R, Pereira V, Gomes I, Tomas C, Morling N, Amorim A, Prata MJ, Carracedo Á, Gusmão L (2012) A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR. Int J Legal Med 126:97–105.  https://doi.org/10.1007/s00414-011-0593-2 CrossRefGoogle Scholar
  9. 9.
    THE 1000 GENOMES PROJECT CONSORTIUM (2015) A global reference for human genetic variation. Nature 526:68–74.  https://doi.org/10.1038/nature15393 CrossRefGoogle Scholar
  10. 10.
    Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  11. 11.
    Pinto JC, Prereira V, Marques SL, Amorim A, Alvarez L, Prata MJ (2015) Mirandese language and genetic differentiation in Iberia: a study using X chromosome markers. Ann Hum Biol 42:20–25.  https://doi.org/10.3109/03014460.2014.944215 CrossRefGoogle Scholar
  12. 12.
    Edelmann J, Kohl M, Dressler J, Hoffmann A (2016) X-chromosomal 21-indel marker panel in German and Baltic populations. Int J Legal Med 130:357–360.  https://doi.org/10.1007/s00414-015-1221-3 CrossRefGoogle Scholar
  13. 13.
    Ferragut JF, Bentayebi K, Pereira R, Castro JA, Amorim a, Ramon C, Picornell A (2017) Genetic portrait of Jewish populations based on three sets of X-chromosome markers: Indels, Alu insertions and STRs. Forensic Sci Int Genet 31:e5–e11.  https://doi.org/10.1016/j.fsigen.2017.09.008 CrossRefGoogle Scholar
  14. 14.
    Ibarra A, Restrepo T, Rojas W, Castilho A, Amorim A, Martinez B, Burgos G, Ostos H, Álvarez K, Camacho M, Suarez Z, Pereira R Gusmão L (2014) A. et al. Evaluating the X chromosome-specific diversity of Colombian populations using insertion/deletion) polymorphisms. PLoS One 9:e87202.  https://doi.org/10.1371/journal.pone.0087202
  15. 15.
    Caputo M, Amador MA, Santos S, Corach D (2017) Potential forensic use of a 33 X-Indel panel in the Argentinean population. Int J Legal Med 131:107–112.  https://doi.org/10.1007/s00414-016-1399-z CrossRefGoogle Scholar
  16. 16.
    Pereira V, Tomas C, Sanchez JJ, Syndercombe-Court D, Amorim A, Gusmão L, Prata MJ, Morling N (2015) The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers. Eur J Hum Genet 23:245–251.  https://doi.org/10.1038/ejhg.2014.90 CrossRefGoogle Scholar
  17. 17.
    Resque RL, Freitas NS, Rodrigues EM, Guerreiro JF, Santos NP, Ribeiro dos Santos A, Zago MA Santos S (2010) Estimates of interethnic admixture in the Brazilian population using a panel of 24 X-linked insertion/deletion markers. Am J Hum Biol 22:849–852.  https://doi.org/10.1002/ajhb.21089 CrossRefGoogle Scholar
  18. 18.
    Pereira V, Moncada E, Diez IE, Tomas C, Amorim A, Morling N, Gusmão L, Prata MJ (2011) Genetic characterization of Somali and Iraqi populations using a set of 33 X-chromosome Indels. Forensic Sci Int Genet 3:e137–e138.  https://doi.org/10.1016/j.fsigss.2011.08.069 CrossRefGoogle Scholar
  19. 19.
    Zarrabeitia MT, Alonso A, Martin J (2006) Study of six X-linked tetranucleotide microsatellites: population data from five Spanish regions. Int J Legal Med 120:147–150.  https://doi.org/10.1007/s00414-005-0057-7 CrossRefGoogle Scholar
  20. 20.
    Ossa H, Aquino J, Sierra S, Ramírez A, Carvalho EF, Gusmão L (2015) Analysis of admixture in Native American populations from Colombia. Forensic Sci Int Genet, Supplement Series 5:e332–e333.  https://doi.org/10.1016/j.fsigss.2015.09.132 CrossRefGoogle Scholar
  21. 21.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  22. 22.
    Moura RR, Coelho AVC, Balbino VQ, Crovella S, Brandão LAC (2015) Meta-analysis of Brazilian genetic admixture and comparison with other Latin America countries. Am J Hum Biol 27:674–680.  https://doi.org/10.1002/ajhb.22714 CrossRefGoogle Scholar
  23. 23.
    Wang S, Ray N, Rojas W, Parra MV, Bedoya G, Gallo C, Poletti G, Mazzotti G, Hill K, Hurtado AM, Camrena B, Nicolini H, Klitz W, Barrantes R, Molina JA, Freimer NB, Bortolini MC, Salzano FM, Petzl-Erler AL, Tsuneto LT, Dipierri JE, Alfaro EL, Bailliet G, Bianchi NO, Lop E, Rothhammer F, Excoffier L, Ruiz-Linares A (2008) Geographic patterns of genome admixture in Latin American Mestizos. PLoS Genet 4:e1000037.  https://doi.org/10.1371/journal.pgen.1000037 CrossRefGoogle Scholar
  24. 24.
    Aquino JG, Jannuzzi J, Carvalho EF, Gusmão L (2015) Assessing the suitability of different sets of indels in ancestry estimation. Forensic Sci Int 5:e34–e36.  https://doi.org/10.1016/j.fsigss.2015.09.014 Google Scholar
  25. 25.
    Campbell CD, Eichler EE (2013) Properties and rates of germline mutations in humans. Trends Genet 29:575–584.  https://doi.org/10.1016/j.tig.2013.04.005 CrossRefGoogle Scholar
  26. 26.
    Sun JX, Helgason A, Masson G, Ebenesersdóttir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson K (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44(10):1161–1165. 10.1038/ng.2398Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Juliana Martinez
    • 1
    Email author return OK on get
  • Fernanda Silva Polverari
    • 1
  • Flávia Alves de Jesus Silva
    • 1
  • Danilo Faustino Braganholi
    • 1
  • Joyce Aparecida Martins Lopes Ferraz
    • 2
  • Leonor Gusmão
    • 3
  • Regina Maria Barretto Cicarelli
    • 1
  1. 1.Laboratory of Paternity Investigation, School of Pharmaceutical SciencesSão Paulo State University (UNESP)São PauloBrazil
  2. 2.Research Centre for Biochemistry and Molecular BiologyMedical School of São José do Rio Preto (FAMERP)São PauloBrazil
  3. 3.DNA Diagnostic Laboratory (LDD)State University of Rio de Janeiro (UERJ)Rio de JaneiroBrazil

Personalised recommendations